Matemática, perguntado por LuanaBeatriz321, 1 ano atrás

Me ajudem por favor... como eu resolvo esse exercício e urgente !!

1º) calcule os declives dos gráficos das funções dadas, nos valores dados de x, e encontre as equações das retas tangentes e faça os gráficos.

a)f(x)=  x^{2} -2 em  x= \frac{3}{2} , x= \frac{-5}{3} , x= a qualquer.
b)f(x)= \frac{2 x^{2} }{3} -3 x em x=-1, x= \frac{2}{3} , x=  \alpha qualquer.
c)f(x)= \frac{1}{x} , em x=1,x=2,x= \alpha  \neq 0.

2º)Encontre a reta normal á curva dada, passando pelo ponto de abscissa dada. e faça o gráfico.

a)f(x)= x^{2}-2x+1 em x=0.

3º) Encontre a reta tangente á curva y= x^{2} com declive m=-8 e faça o gráfico.

Soluções para a tarefa

Respondido por Usuário anônimo
4
Bom dia Luana!

Solução!

Para resolver esses exercícios,é necessario encontra o valor de y fazendo a substituição ainda con esse raciocinio: todas as funções precisam serem derivadas e substituir o valor de x para encontrar o coeficiente angular,feito isso podemos usar a formula da reta para estarmos explicitando a mesma.

Vamos chamar de m o coeficiente angular.


1º) calcule os declives dos gráficos das funções dadas, nos valores dados de x, e encontre as equações das retas tangentes e faça os gráficos.

Exercicio ~~A\\\\\\ f(x)= x^{2} -2~~em ~~x= \frac{3}{2},~~x= \frac{-5}{3}\\\\\ y=( \frac{3}{2}) ^{2}-2\\\\\ y= \frac{9}{4}-2\\\\ y= \frac{1}{4} \\\\\ A( \frac{3}{2}, \frac{1}{4})\\\\\\ Calculo ~~do~~ coeficiente~~ angular.\\\\\ f(x)= x^{2} -2\\\\\  f'(x)= 2x\\\\\ m= 2.\frac{3}{2}\\\\\ m=3\Rightarrow~~coeficiente~~angular 

equacao~~ da~~ reta.\\\\\\\ y-yA=m(x-xA)\\\\\ y- \frac{1}{4}=3(x- \frac{3}{2})\\\\\\\ y- \frac{1}{4}=3x- \frac{9}{2})\\\\ 4y-1=12x-18\\\\\ 4y=12x-18+1\\\\\ 4y=12x-17\\\\\ y= \frac{12x-17}{4} \Rightarrow~~Reta~~tangente

Exercicio ~~A\\\\\\ f(x)= x^{2} -2\\\\\\ y=(- \frac{5}{3})^{2}-2\\\\\ y= \frac{25}{9} -2\\\\\ y= \frac{7}{9} \\\\\ A( \frac{-5}{3}, \frac{7}{9})\\\\\ f(x)=x^{2} -2\\\\\ f'(x)= 2x\\\\\ m= 2.\frac{-5}{3}\\\\\ m= \frac{-10}{3} \Rightarrow coeficiente~~angular

y- \frac{7}{9}= \frac{-10}{3}(x+ \frac{5}{3})\\\\\ y- \frac{7}{9}= \frac{-10x}{3}- \frac{50}{9}\\\\\ 9y-7=-30x-50\\\\\ 9y=-30x-50+7\\\\\ 9y=-30x-43\\\\\ y= \frac{-30x-43}{9} \Rightarrow Reta~~tangente.

Exercicio~~b\\\\\\ f(x)= \frac{2 x^{2} }{3} -3x~~em~~x=-1~~,x= \frac{2}{3}\\\\\ y= \frac{2(-1)^{2} }{3} -3(-1)\\\\\ y= \frac{2}{3} +3 \\\\\ y= \frac{11}{3}\\\\\ B(-1, \frac{11}{3})\\\\\\ f(x)= \frac{2 x^{2} }{3} -3x\\\\\ f'(x)= \frac{4 x }{3} -3\\\\ m=\frac{4 .(-1) }{3} -3\\\\ m=\frac{-4 }{3} -3\\\\ m= \frac{-13}{3} \Rightarrow~~coeficiente~~angular

y- \frac{11}{3}=- \frac{13}{3}(x+1)\\\\\ y- \frac{11}{3}=- \frac{13x}{3}- \frac{13}{3} \\\\\ 3y-11=-13x-13\\\\\ 3y=-13x-13+11\\\\ 3y=-13x-2\\\\ y= \frac{-13x-2}{3} \Rightarrow Equacao~~ da~~ reta

Exercicio~~B\\\\\\
 f(x)= \frac{2 x^{2} }{3} -3x\\\\
y=\frac{2 ( \frac{4}{9})^{2} }{3} -3( \frac{2}{3}) \\\\
y=\frac{2 ( \frac{4}{9})^}{3}  -2 \\\\
y= \frac{8}{27}- 54\\\\
y= \frac{-46}{27} \\\\\
B( \frac{2}{3}, \frac{-46}{27})\\\\\\\
 f(x)= \frac{2 x^{2} }{3} -3x\\\\\\
f'(x)= \frac{4 x }{3} -3\\\\\\
m= \frac{4  (\frac{2}{3} ) }{3} -3\\\\\\
m= \frac{8 }{9} -3\\\\\\
m= \frac{8-27}{9}\\\\\\
m= \frac{-19}{9} \Rightarrow coeficiente~~angular

y+ \frac{46}{27}= \frac{-19}{9}(x- \frac{2}{3})\\\\\
y+ \frac{46}{27}= \frac{-19x}{9} +\frac{38}{27}\\\\\
27y+46=-57x+38\\\\\
27y=-57x+38-46\\\\\
27y=-57-8\\\\\
y= \frac{-57x-8}{27} \Rightarrow ~~equacao~~ da~~ reta.


Exercicio~~C\\\\\\
f(x)= \frac{1}{x} ~~em~~x=1~~e~~x=2\\\\
y=\frac{1}{1} \\\\
y=1\\\\\
C(1,1)\\\\
f(x)= \frac{1}{x}\\\\\\ 
f'(x)=  x^{-1} \\\\\\ 
f'(x)=  -x^{-1-1} \\\\\\ 
f'(x)=  -x^{-2} \\\\\\
f'(x)=  - \frac{1}{ x^{2} }  \\\\\\
m= \frac{1}{1}\\\\
m=-1 \Rightarrow coeficiente~~angular

y-1=-1(x-1)\\\\
y-1=-x+1\\\\
y=-x+1+1\\\\
y=-x+2\Rightarrow equacao~~ da~~ reta.


Ecercicio~~C\\\\\
f(x)= \frac{1}{x}\\\\\
y= \frac{1}{2}\\\\\
C(2, \frac{1}{2})\\\\\
 f'(x)= - \frac{1}{ x^{2} }\\\\
m=  - \frac{1}{ 2^{2} }\\\\
m=  - \frac{1}{ 4 }\Rightarrow coeficiente~~angular.

y- \frac{1}{2}= -\frac{1}{4}(x-2)\\\\\
y- \frac{1}{2}= -\frac{1x}{4}+ \frac{1}{2} \\\\\
4y-2=-x+2\\\\\
4y=-x+2+2\\\\\
4y=-x+4\\\\
y= \frac{-x}{4}+1 \Rightarrow equacao~~da~~reta


2º)Encontre a reta normal á curva dada, passando pelo ponto de abscissa dada. e faça o gráfico.

Observação: reta normal tem que ser perpendicular a reta tangente.

Exercicio~~A\\\\\
f(x)= x^{2} -2x+1~~em~~x=0\\\\
y=0^{2} -2.0+1\\\\
y=1\\\\\
A(0,1)\\\\\
f(x)= x^{2} -2x+1\\\\\
f'(x)= 2x -2\\\\\
m=2.0-2\\\\
m=-2

y-1=-2(x-0)\\\\\
y=-2x+1\Rightarrow equacao~~da ~~reta~~tangente.

Para determinar a reta tangente basta inverter o coeficiente angular.
m= \frac{1}{2}\\\\\
y-1= \frac{1}{2}(x-0)\\\\
y-1= \frac{x}{2}\\\\\
2y-2= x\\\\\
2y=x+2\\\\\
y= \frac{x}{2}+1\Rightarrow equacao~~da~~reta~~normal~~em~~vermelho.

Exercicio   3

y= x^{2} \\\\\
m=-8\\\\\
m=2x\\\\
2x=-8\\\\
x= \frac{-8}{2}\\\\\
x=-4\\\\\
substituindo!\\\\\
y= x^{2} \\\\
y=(-4)^{2}\\\\
y=16\\\\\
D(-4,16)\\\\\
y-16=-8(x+4)\\\\
y-16=-8x-32\\\\
y=-8x-32+16\\\\\
y=-8x-16  \Rightarrow equacao~~da~~reta

Os gráficos estão anexo.

Bom dia!
Bons estudos!


Anexos:

LuanaBeatriz321: Muito Obrigado !
Perguntas interessantes