Matemática, perguntado por milly637, 5 meses atrás

Me ajudem pfv tô desesperada ❤️

Anexos:

Soluções para a tarefa

Respondido por joelwesley
1

Resposta:

complidado

Explicação passo a passo:

mesmo


joelwesley: ops : entedir
milly637: Sem problemas
joelwesley: blz
joelwesley: vc e de onde ?
milly637: Brasil
joelwesley: rsrs
joelwesley: btf que cidade
milly637: Sp e vc?
joelwesley: amazonas
joelwesley: conhece
Respondido por justforthebois123
0

Resposta:

a)

\alpha=-\arcsin \left(f\right)-2\pi n+180,\:\alpha=-\pi +180-2\pi n-\arcsin \left(-f\right)

\alpha=\arcsin \left(f\right)+2\pi n-180,\:\alpha=\pi +\arcsin \left(-f\right)+2\pi n-180

\alpha=-\arcsin \left(f\right)-2\pi n+360,\:\alpha=-\pi +360-2\pi n-\arcsin \left(-f\right)

b)

\alpha=-\arccos \left(f\right)-2\pi n+180,\:\alpha=\arccos \left(f\right)-2\pi n+180

\alpha=\arccos \left(f\right)+2\pi n-180,\:\alpha=-\arccos \left(f\right)+2\pi n-180

\alpha=-\arccos \left(f\right)-2\pi n+360,\:\alpha=\arccos \left(f\right)-2\pi n+360

c) Todos

d) Esquerda e direita

e) De cima e de baixo

Explicação passo a passo:

a)

f\left(\sin \left(\alpha \right)\right)=\sin \left(180-\alpha \right)

f=\sin \left(180-\alpha \right)

\sin \left(180-\alpha\right)=f

180-\alpha=\arcsin \left(f\right)+2\pi n,\:180-\alpha=\pi +\arcsin \left(-f\right)+2\pi n

\alpha=-\arcsin \left(f\right)-2\pi n+180,\:\alpha=-\pi +180-2\pi n-\arcsin \left(-f\right)

f\left(\sin \left(\alpha \right)\right)=\sin \left(180+\alpha \right)

f=\sin \left(180+\alpha\right)

\sin \left(180+\alpha\right)=f

180+\alpha=\arcsin \left(f\right)+2\pi n,\:180+\alpha=\pi +\arcsin \left(-f\right)+2\pi n

\alpha=\arcsin \left(f\right)+2\pi n-180,\:\alpha=\pi +\arcsin \left(-f\right)+2\pi n-180

f\left(\sin \left(\alpha \right)\right)=\sin \left(360-\alpha \right)

f=\sin \left(360-\alpha\right)

\sin \left(360-\alpha\right)=f

360-\alpha=\arcsin \left(f\right)+2\pi n,\:360-\alpha=\pi +\arcsin \left(-f\right)+2\pi n

\alpha=-\arcsin \left(f\right)-2\pi n+360,\:\alpha=-\pi +360-2\pi n-\arcsin \left(-f\right)

b)

f\left(\cos \left(\alpha \right)\right)=\cos \left(180-\alpha \right)

f=\cos \left(180-\alpha \right)

\cos \left(180-\alpha\right)=f

180-\alpha=\arccos \left(f\right)+2\pi n,\:180-\alpha=-\arccos \left(f\right)+2\pi n

\alpha=-\arccos \left(f\right)-2\pi n+180,\:\alpha=\arccos \left(f\right)-2\pi n+180

f\left(\cos \left(\alpha \right)\right)=\cos \left(180+\alpha \right)

f=\cos \left(180+\alpha \right)

\cos \left(180+\alpha\right)=f

180+\alpha=\arccos \left(f\right)+2\pi n,\:180+\alpha=-\arccos \left(f\right)+2\pi n

\alpha=\arccos \left(f\right)+2\pi n-180,\:\alpha=-\arccos \left(f\right)+2\pi n-180

f\left(\cos \left(\alpha \right)\right)=\cos \left(360-\alpha \right)

f=\cos \left(360-\alpha \right)

\cos \left(360-\alpha\right)=f

360-\alpha=\arccos \left(f\right)+2\pi n,\:360-\alpha=-\arccos \left(f\right)+2\pi n

\alpha=-\arccos \left(f\right)-2\pi n+360,\:\alpha=\arccos \left(f\right)-2\pi n+360

c) Todos

d) Esquerda e direita

e) De cima e de baixo

Anexos:
Perguntas interessantes