Matemática, perguntado por pleandrolopes, 1 ano atrás

Me ajudem pelo amor de Deus-Efetue as operações indicadas em caso abaixo:
a)a-5/2a + 4/3a
b)x/2x + 2y-3x/x+y
c)a/b + b/a+b + a^2/a^2+ab
d)m+n/m-n + n-m/m+n - 4mn/m^2-n^2
e)x+2/x^2+x - x+1/x^2+2x+1 - 1/x

Soluções para a tarefa

Respondido por SabrinaKaren1995
1
a Resposta da a e b estão na imagen
Anexos:
Respondido por Makaveli1996
1

Oie, Td Bom?!

a)

 =\frac{a - 5}{2a}  +  \frac{4}{3a}

 =  \frac{3(a - 5)}{3 \: . \: 2a}  +  \frac{2 \: . \: 4}{2 \: . \: 3a}

 =  \frac{3(a - 5)}{6a}  +  \frac{8}{6a}

 =  \frac{3(a - 5) + 8}{6a}

 =  \frac{3a - 15 + 8}{6a}

 =  \frac{3a - 7 }{6a}

b)

 =  \frac{x}{2x}  +  \frac{2y - 3x}{x + y}

 =  \frac{1}{2}  +  \frac{2y + 3x}{x + y}

 =  \frac{(x + y) \: . \: 1}{(x + y) \: .  \: 2}  +  \frac{2(2y - 3x)}{2(x + y)}

 =  \frac{x + y + 2(2y - 3x)}{2(x + y)}

 =  \frac{x + y + 4y - 6x}{2x + 2y}

 =  \frac{ - 5x + 5y}{2x + 2y}

c)

 =  \frac{a}{b}  +  \frac{b}{a + b}  +  \frac{a {}^{2} }{a {}^{2}  + ab}

 =  \frac{a}{b}  +  \frac{b}{a  + b}  +  \frac{a {}^{2} }{a \: . \: (a + b)}

 =  \frac{a}{b}  +  \frac{b }{a + b}  +  \frac{a}{a + b}

 =  \frac{(a + b)a}{(a + b)b}  +  \frac{b \: . \: b}{b \: . \: (a + b) }  +  \frac{ba}{b \: . \: (a + b)}

 =  \frac{(a + b)a}{b \: . \: (a + b)}  +  \frac{b {}^{2} }{b \: . \: (a + b)}  +  \frac{ab}{b \: . \: (a + b)}

 =  \frac{a \: . \: (a + b) + b {}^{2}  + ab}{b \: . \: (a + b)}

 =  \frac{a {}^{2} + ab + b {}^{2}   + ab}{b \: . \: (a + b)}

 =  \frac{a {}^{2}  + 2ab + b {}^{2} }{b \: . \: (a + b)}

 =  \frac{(a + b) {}^{2} }{b \: . \: (a + b)}

 =  \frac{a + b}{b}

d)

 =  \frac{m + n}{m - n}  +  \frac{n - m}{m + n}  -  \frac{4mn}{m {}^{2}  - n {}^{2} }

 = \frac{m + n}{m - n}  +  \frac{n - m}{m + n}  -  \frac{4mn}{(m - n) \: . \: (m + n)}

 =  \frac{(m + n) \: . \: (m + n)}{(m + n) \: . \: (m - n)}  +  \frac{(m - n) \: . \: (n - m)}{(m - n)  \: . \: (m + n)}  -  \frac{4mn}{(m - n) \: . \: (m + n)}

 =  \frac{(m + n) {}^{2} }{(m - n) \: .  \: (m + n)} +  \frac{(m - n) \: . \: (n - m)}{(m - n)  \: . \: (m + n)}  -  \frac{4mn}{(m - n) \: . \: (m + n)}

 =  \frac{(m + n) {}^{2} + (m - n) \: . \: (n - m) - 4mn }{(m - n) \: . \: (m + n)}

 =  \frac{(m + n) {}^{2} + (m - n) \: . \: ( - (m - n)) - 4mn }{(m - n) \: . \: (m + n)}

 =  \frac{(m + n) {}^{2} - (m - n) {}^{2}   - 4mn}{(m - n) \: . \: (m + n)}

 =  \frac{2n  \: . \: 2m - 4mn}{(m - n) \: . \: (m + n)}

 =  \frac{4mn - 4mn}{(m - n) \: . \: (m + n)}

 =  \frac{0}{(m - n) \: . \: (m + n)}

 = 0

e)

 =  \frac{x + 2}{x {}^{2}  + x}  -  \frac{x + 1}{x {}^{2}  + 2x + 1}  -  \frac{1}{x}

 =  \frac{x + 2}{x \: . \: (x + 1)}  -  \frac{x + 1}{(x + 1) {}^{2} }  -  \frac{1}{x}

 =  \frac{x + 2}{x \: . \: (x + 1)}  -  \frac{1}{x + 1}  -  \frac{1}{x}

 =  \frac{x +2 }{x \:. \: (x + 1) }  -  \frac{x \: . \: 1}{x \: . \: (x + 1)} -   \frac{(x + 1) \: . \: 1}{(x + 1) \: . \: x}

 =  \frac{x + 2}{x \: . \: (x + 1)}   - \frac{x}{x \: . \: (x + 1)}  -  \frac{x + 1}{x \: . \: (x + 1)}

 =  \frac{x + 2 -x -  (x + 1)}{x \: . \: (x + 1)}

 =  \frac{2 - (x + 1)}{x \: . \: (x + 1)}

 =  \frac{2 - x - 1}{x {}^{2} + x }

 =  \frac{1 - x}{x {}^{2}  + x}

Att. Makaveli1996

Perguntas interessantes