Matemática, perguntado por pedrolucaspaiva, 10 meses atrás

Me ajudem o enunciado esta na foto

Anexos:

Soluções para a tarefa

Respondido por PurposeLife
1

a)

 \frac{x - 4}{x - 1}  =  \frac{x - 5}{x - 1}  \\ \\ \frac{x - 4}{x - 1}  =  \frac{x - 5}{x - 1} \: . \:  x = 1.x = 3 \\  \\ (x - 4) \times (x - 3) = (x - 5) \times (x - 1) \\  \\  {x}^{2}  - 3x - 4x + 12 =  {x}^{2}  - x - 5x + 5 \\  \\  - 3x - 4x  + 12 =  - x - 5x + 5 \\  \\  - 7x + 12 =  - 6x + 5 \\  \\  - 7x + 6x = 5 - 12 \\  - x =  - 7 \\ x = 7 \: .x = 1 \: .x = 3 \\ x = 7

b)

 \frac{2x - 3}{x - 2}  =  \frac{x + 2}{2x + 3}  \\  \\ \frac{2x - 3}{x - 2}  =  \frac{x + 2}{2x + 3}. \: x = 2 \: .x =  \frac{3}{2}  \\ (2x - 3) \times (2x - 3) = (x + 2) \times (x - 2) \\ (2x - 3) \times (2x - 3) - (x + 2) \times (x - 2) = 0 \\ (2x - 3 {)}^{2}  - ( {x}^{2}  - 4) = 0 \\ 4 {x}^{2}  - 12x + 9 -  {x}^{2}  + 4 = 0 \\ 3 {x}^{2}  - 12x + 13 = 0 \\ x =  \frac{ - ( - 12) +  \sqrt{( - 12 {)}^{2} - 4 \times 3 \times 13 } }{2 \times 3}  \\ x =  \frac{12 +  \sqrt{ 114 - 156} }{6}  \\ x =  \frac{12 +  \sqrt{ - 12} }{6}

Solução "b"

x € R

Espero que ajude!


pedrolucaspaiva: ajudou muito amigp
pedrolucaspaiva: amigo *
Perguntas interessantes