ME AJUDEM, É MUITO URGENTE!!!
Calcule o limite:
10 ao 16.
Soluções para a tarefa
10)
Lim (6t²+5t)/(1-t)(2t-3)
t-->-∞
Lim (6t²+5t)/(5t-3-2t²)
t-->-∞
Lim t²(6+5/t)/t²(5/t-3/t²-2)
t-->-∞
Lim (6+5/t)/(5/t-3/t²-2) =(6+5/(-∞))/(5/(-∞)-3/(-∞)²-2) =(6+0)/(0+0-2)
t-->-∞
=6/(-2)=-3
-------------------------------------------------------------------------
11)
Lim √(1+4x²) / (4+x)
x-->∞
Lim x√(1/x+4) / x(4/x+1)
x-->∞
Lim √(1/x+4) / (4/x+1) = √(1/∞+4) / (4/∞+1) =√4/1 =2
x-->∞
-------------------------------------------------------------------
12)
Lim √(x²+4x) / (4x+1)
x-->-∞
Lim √[(x)²(1+4/x) ]/ x(4+1/x)
x-->-∞
Observe ==> √(x)² ==>para x--> -∞ ==> √(x)² =√(-x)² =-x
Lim √(-x)² *√(1+4/x)/ x(4+1/x)
x-->-∞
Lim -x*√(1+4/x)/ x(4+1/x)
x-->-∞
Lim -√(1+4/x)/ (4+1/x) =-1/4
x-->-∞
---------------------------------------------------
13)
Lim (1-√x)/(1+√x)
x-->∞
Lim √x(1/√x-1) / √x(1/√x+1)
x-->∞
Lim (1/√x-1) / (1/√x+1) =(1/∞ -1)/(1/∞ +1)=(0-1)/(0+1) = -1
x-->∞
--------------------------------------------------
14)
lim √( x²+3x+1) -x
x-->∞
lim [√( x²+3x+1) -x] * [√( x²+3x+1) +x]/ [√( x²+3x+1) +x]
x-->∞
lim [ x²+3x+1 -x²] / [√( x²+3x+1) +x]
x-->∞
lim [ 3x+1 ] / [√( x²+3x+1) +x]
x-->∞
lim x[ 3+1/x ] / [x√( 1+3/x+1/x²) +x]
x-->∞
lim [ 3+1/x ] / [√( 1+3/x+1/x²) +1]
x-->∞
= [ 3+1/∞ ] / [√( 1+3/∞+1/∞²) +1] =3/2
--------------------------------------------
15)
Lim √(x²+1) - √(x²-1)
x-->∞
Lim [√(x²+1) - √(x²-1)][√(x²+1) + √(x²-1)]/[√(x²+1) + √(x²-1)]
x-->∞
Lim [x²+1 - x²+1]/[√(x²+1) + √(x²-1)]
x-->∞
Lim [2]/[√(x²+1) + √(x²-1)]
x-->∞
=2 /[∞+∞] =2/∞ =0
---------------------------------------------
16)
Lim √(1+x) - √(x)
x-->∞
Lim [√(1+x) - √(x)][√(1+x) + √(x)]/[√(1+x) + √(x)]
x-->∞
Lim [1+x - x]/[√(1+x) + √(x)]
x-->∞
Lim [1]/[√(1+x) + √(x)]
x-->∞
=1/∞ = 0