Matemática, perguntado por eduardaoliveiraestud, 9 meses atrás

Me ajudem com logaritmo matemática

log4 0,1024 = x​

Soluções para a tarefa

Respondido por Nerd1990
0

\sf \:  log_{4}(0.1024)  = x \\  \\ \sf \:  log_{2 {}^{2} }(0.1024)  = x \\  \\ \sf \:  log_{2 {}^{2} }\Bigg( \frac{64}{625} \Bigg) = x \\   \\ \sf \:  log_{2 {}^{2} }\Bigg( \frac{8 {}^{2} }{625} \Bigg)  = x\\  \\ \sf \:  log_{2 {}^{2} }\Bigg( \frac{8 {}^{2} }{25 {}^{2} } \Bigg) = x \\  \\ \sf \:  log_{2 {}^{2} }\Bigg(\Bigg( \frac{8}{25} \Bigg)\Bigg) {}^{2}  = x \\  \\ \sf \:  \frac{2}{2}  \times  log_{2}\Bigg( \frac{8}{25} \Bigg) = x \\  \\ \sf \: 1 log_{2}\Bigg( \frac{8}{25} \Bigg)  = x\\  \\ \sf \:  log_{2}\Bigg( \frac{8}{25} \Bigg)  = x\\  \\ \sf \:  log_{2}(8)  -  log_{2}(25)  = x \\  \\ \sf \:  log_{2}\Big(2 {}^{3} \Big) -  log_{2}(25)  = x \\  \\ \sf \:  log_{2}\Big(2 {}^{3} \Big) -  log_{2}\Big( {5}^{2} \Big) = x \\  \\ \sf \: 3  log_{2}(2)  -  log_{2}\Big(5 {}^{3} \Big) = x \\  \\ \sf \: 3 \times 1 -  log_{2}\Big(5 {}^{3} \Big)  = x\\  \\ \sf \: 1 -  log_{2}\Big(5 {}^{3} \Big) = x \\  \\ \sf \: 3 - 2 log_{2}(5)  = x \\  \\ \sf \: x = 3 - 2 log_{2}(5)  \: ou \: x \approx \:  - 1.64386

Att: Nerd1990

Anexos:
Perguntas interessantes