me ajuda pfvvvvv
encontre os valores de k para os quais a equação x² + 2 (k-1) X + (k +5) =0 possui pelo menos uma raiz positiva
se puderem coloquem a conta pfv
Soluções para a tarefa
Resposta:
Os valores de k para que a função x² - (k + 1)x + (10 + k) = 0 tenha uma raiz igual ao dobro da outra, são: -11/2 e 8.
Vamos considerar que x' e x'' são as duas raízes da equação do segundo grau x² - (k + 1)x + (10 + k) = 0.
De acordo com o enunciado, podemos dizer que x' = 2x''.
A soma das raízes é definida por:
x' + x'' = -b/a.
O produto das raízes é definido por:
x'.x'' = c/a.
Da equação, temos que:
a = 1
b = -k - 1
c = 10 + k.
Assim:
x' + x'' = -(-k - 1)
x' + x'' = k + 1
e
x'.x'' = 10 + k.
Como x' = 2x'', então:
2x'' + x'' = k + 1
3x'' = k + 1
x'' = (k + 1)/3.
Portanto:
2x''.x'' = 10 + k
2x''² = 10 + k
2((k + 1)/3)² = 10 + k
2(k² + 2k + 1)/9 = 10 + k
k² + 2k + 1 = 9/2(10 + k)
k² + 2k + 1 = 45 + 9k/2
2k² + 4k + 2 = 90 + 9k
2k² - 5k - 88 = 0
2(k - 8)(k + 11/2) = 0.
Ou seja, os valores de k são -11/2 e 8