Matemática, perguntado por Umaxugada, 3 meses atrás

MATRIZES:

Se o determinante da matriz abaixo
( 2 1 0 )
(k k k)
(1 2 -2)
 \: \: \binom{2 \: \: 1 \: \: 0 \: }{k \: \: k \: \: k \: } \: \\ \binom{1 \: \: 2 \: - 2}{}
É igual a 10 ,então qual o determinante da matriz :

.. ..( 2 ) . . . ( 1 ) . . . ( 0 )
( k + 4 ) = ( k + 3 ) = ( k - 1 )
. ...( 1 ) . . . . ( 2 ) . . . ( -2 )

 \binom{2}{k \: + \: 4} = \binom{1}{k \: + \: 3} = \binom{0}{k \: - \: 1 \: } \ \: \\ \: \: \: \ \: \: \: : \: \: \: \: \: \: \: \binom{ \: \: \: 1 \: \: \: }{} \: \: \: \: \: \: \: \binom{ \: \: 2 \: \: \:}{} \: \: \: \: \: \: \: \: \: \: \: \ \binom{ - \: 2}{} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:

Soluções para a tarefa

Respondido por Nasgovaskov
2

Resposta:

De acordo com o enunciado:

\sf \left(\begin{array}{ccc}\sf 2&\sf 1&\sf 0\\\sf k&\sf k&\sf k\\\sf 1&\sf 2&\sf \!\!\!-2\end{array}\right)=A

\sf \left|\begin{array}{ccc}\sf 2&\sf 1&\sf 0\\\sf k&\sf k&\sf k\\\sf 1&\sf 2&\sf \!\!\!-2\end{array}\right|=det\,A

\sf \left|\begin{array}{ccc}\sf 2&\sf 1&\sf 0\\\sf k&\sf k&\sf k\\\sf 1&\sf 2&\sf \!\!\!-2\end{array}\right|=10

Pela regra de Sarrus:

\sf \left|\begin{array}{ccc}\sf 2&\sf 1&\sf 0\\\sf k&\sf k&\sf k\\\sf 1&\sf 2&\sf \!\!\!-2\end{array}\right|\begin{matrix}\sf 2&\sf 1\\\sf k&\sf k\\\sf 1&\sf 2\end{matrix}~=10

\sf2\cdot k\cdot(-2)+1\cdot k\cdot1+0\cdot k\cdot2-(1\cdot k\cdot(-2)+2\cdot k\cdot2+0\cdot k\cdot1)=10

\sf-\,4k+k+0-(-\,2k+4k+0)=10

\sf-\,3k-2k=10

\sf-\,5k=10

\sf k=-\dfrac{10}{5}

\sf k=-\,2

Assim:

\sf B=\left(\begin{array}{ccc}\sf 2&\sf 1&\sf 0\\\sf k+4&\sf k+3&\sf k-1\\\sf 1&\sf 2&\sf \!\!\!-2\end{array}\right)

\sf det\,B=\left|\begin{array}{ccc}\sf 2&\sf 1&\sf 0\\\sf k+4&\sf k+3&\sf k-1\\\sf 1&\sf 2&\sf \!\!\!-2\end{array}\right|

\sf det\,B=\left|\begin{array}{ccc}\sf 2&\sf 1&\sf 0\\\sf -\,2+4&\sf -\,2+3&\sf -\,2-1\\\sf 1&\sf 2&\sf \!\!\!-2\end{array}\right|

\sf det\,B=\left|\begin{array}{ccc}\sf 2&\sf 1&\sf 0\\\sf 2&\sf 1&\sf \!\!\!-\,3\\\sf 1&\sf 2&\sf \!\!\!-2\end{array}\right|

\sf det\,B=\left|\begin{array}{ccc}\sf 2&\sf 1&\sf 0\\\sf 2&\sf 1&\sf \!\!\!-\,3\\\sf 1&\sf 2&\sf \!\!\!-2\end{array}\right|\begin{matrix}\sf 2&\sf 1\\\sf 2&\sf 1\\\sf 1&\sf 2\end{matrix}

\sf det\,B=2\cdot1\cdot(-2)+1\cdot(-3)\cdot1+0\cdot2\cdot2-(1\cdot2\cdot(-2)+2\cdot(-3)\cdot2+0\cdot1\cdot1)

\sf det\,B=-\,4-3+0-(-\,4-12+0)

\sf det\,B=-\,7+16

\red{\sf det\,B=9}

O determinante desta matriz é igual a 9.

Respondido por Math739
2

Calculando o determinante da primeira matriz:

\sf A=\left[\begin{array}{c c c}\sf2&\sf1&\sf0\\\sf   k&\sf k &\sf k\\\sf 1&\sf2&\sf-2\end{array}\right]

Temos que:

\sf  det\,A=-4k+k+0-0-4k+2k

\sf det\,A=-5k

Como det A = 10, temos que:

\sf -5k=10

\sf k=\dfrac{10}{-5}

\sf  k=-2

Sabendo que k = -2, então agora é possível calcular o determinante da segunda matriz, substituindo k por -2.

\sf B=\left[\begin{array}{c c c}\sf 2&\sf1&\sf0\\\sf k+4&\sf k+3&\sf k-1\\\sf 1&\sf2&\sf-2\end{array}\right]

\sf B=\left[\begin{array}{c c c}\sf2&\sf1&\sf0\\\sf-2+4&\sf-2+3&\sf-2-1\\\sf1&\sf2&\sf-2\end{array}\right]

\sf B=\left[\begin{array}{c c c}\sf2&\sf1&\sf0\\\sf2&\sf1&\sf-3\\\sf1&\sf2&\sf-2\end{array}\right]

Calculando det B, temos que:

\sf det\,B=-4-3+0+0+12+4

\red{\sf det\,B=9}\leftarrow\sf resposta

Perguntas interessantes