Matemática, perguntado por BiazinhaF, 1 ano atrás

Maria deve criar uma senha de 4 dígitos para sua conta bancária. Nessa senha, somente de aparecer os números 1,2,3,4,5 podem ser usados em um mesmo algarismo pode aparecer mais de uma vez. Contudo,supersticiosa, Maria não quer que na sua senha contenha o número 13, isto é o algarismo 1 seguido mediatamente pelo algarismo 3. De quantas maneiras distintas Maria pode escolher sua senha ? 

a-)551  b-)552  c-)553  d-)554  e-)555

Soluções para a tarefa

Respondido por mathfms
5
Se Maria não fosse supersticiosa teríamos um total de:
_ _ _ _
5 possibilidades (números) para a primeira posição da senha;
5 possibilidades (números) para a segunda posição da senha;
5 possibilidades (números) para a terceira posição da senha;
5 possibilidades (números) para a quarta posição da senha;

Pelo princípio multiplicativo teríamos 5 x 5 x 5 x 5 = 625 senhas
Mas como ela tem TOC rs teremos que retirar todas as senhas que contenham o número 13.
1 3 _ _           Cinco possibilidades para a terceira e a quarta posição então 5 x 5 = 25
_1 3 _            Cinco possibilidades para a primeira e a quarta posição então 5 x 5 = 25
_ _ 13            Cinco possibilidades para a primeira e a segunda posição então 5 x 5 = 25
Pelo princípio aditivo teremos 25 + 25 + 25 = 75 senhas com o número 13

Teremos que adicionar 1 pois a senha 1313 foi retirada duas vezes quando feito 13 _ _ e _ _ 13

Portanto o número de possibilidades de senhas é: 625 - 75 + 1= 551


Espero que tenhas entendido

mathfms: Fiz uma pequena correção na conta, pois na verdade era menos 75 e não 100. Mas agora observo suas alternativas e não bate. Vou dar mais uma olhada, mas acredito que tenha feito todos os passos corretamente.
mathfms: A sim a resposta correta é 551, pois quando eu fiz 13 - -, eu contei a senha 1313 e quando eu fiz _ _ 13 eu também havia contado a senha1313 novamente então eu retirai a mesma senha duas vezes a conta, portanto teremos que recoloca-la. 550 + 1 = 551
BiazinhaF: aah, ok muito obrigada !!
Respondido por AlissonLaLo
0

\Large\boxed{\boxed{\boxed{{Ola\´\ Bia}}}}}

A senha deve conter 4 dígitos e os dígitos podem se repetir.

Temos a disposição de escolha os números 1,2,3,4 e 5.

Porém Maria não quer que sua senha apareça o número 13 (1+3) .

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

1º Opção de senha restrita = 13ØØ

2º Opção de senha restrita = Ø13Ø

3º Opção de senha restrita =ØØ13

São 3 opções que não desejamos para a senha de Maria.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Agora iremos calcular o total de possibilidades ( como se não existisse a restrição de senha) .

1º Digito de escolha = 5 Possibilidades

2º Digito de escolha = 5 Possibilidades

3º Digito de escolha = 5 Possibilidades

4º Digito de escolha = 5 Possibilidades

5⁴=625 Possibilidades de escolha destas senhas.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

I) Agora fixando o 1 e o 3 nessa ordem( 1,3,Ø,Ø) , vamos calcular o total de possibilidades existentes.

1º Digito de escolha = 1 Possibilidade ( o número 1 )

2º Digito de escolha = 1 Possibilidade ( o número 3 )

3º Digito de escolha = 5 Possibilidades

4º Digito de escolha = 5 Possibilidades

5² = 25 Possibilidades.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

II) Agora fixando o 1 e o 3 nessa ordem( Ø,1,3,Ø) , vamos calcular o total de possibilidades existentes.

1º Digito de escolha = 5 Possibilidades

2º Digito de escolha = 1 Possibilidade

3º Digito de escolha = 1 Possibilidade

4º Digito de escolha = 5 Possibilidades

5² = 25 Possibilidades.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

III) Agora fixando o 1 e o 3 nessa ordem( Ø,Ø,1,3) , vamos calcular o total de possibilidades existentes.

1º Digito de escolha = 5 Possibilidades

2º Digito de escolha = 5 Possibilidades

3º Digito de escolha = 1 Possibilidade

4º Digito de escolha = 1 Possibilidade

5² = 25 Possibilidades.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Agora note no I e no III , temos no I 25 opções de senhas começando com 13 e no III também temos 25 opções de senhas terminadas em 13.Como uma das duas já está contidas nas 625 opções diferentes , temos que subtrair um do total das possibilidade I , II e III.

25+25+25 = 75

75-1 = 74.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Agora temos o total de senhas diferentes(625) e o total de senhas em que 1 e 3 são seguidos , como a Maria não quer que esses números apareçam , temos que subtraí-los do total.

625-74 = 551

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Portanto são 551 maneiras distintas que Maria pode escolher a sua senha.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Espero ter ajudado!

Perguntas interessantes