Matemática, perguntado por pg432050, 8 meses atrás

maior raiz da equação x2 - 5x + 4 = 0​

Soluções para a tarefa

Respondido por Nerd1990
3

\sf\:x {}^{2}  - 5x  + 4 = 0 \\  \\  \\ \sf\:x =   - \frac{ - 5}{2}    \pm \sqrt{\Bigg( \frac{ -5 }{2} \Bigg) {}^{2}   - 4} \\  \\  \\ \sf\:x =  \frac{5}{2}  \pm \sqrt{\Bigg( \frac{ - 5}{2} \Bigg) {}^{2} - 4 }  \\  \\  \\ \sf\:x =  \frac{5}{2}  \pm \sqrt{ \frac{ - 5 {}^{2} }{2 {}^{2} } - 4 }  \\  \\  \\ \sf\:x =  \frac{5}{2}  \pm \sqrt{ \frac{25}{2 {}^{2} } - 4 }  \\  \\  \\ \sf\:x =  \frac{5}{2}  \pm \sqrt{ \frac{25}{4}  - 4} \\  \\  \\ \sf\:x =  \frac{5}{2}  \pm \sqrt{ \frac{25}{4}  -  \frac{4}{1} }  \\  \\  \\ \sf\:x =  \frac{5}{2}  \pm \sqrt{ \frac{25  - 4 \cdot4}{4} }  \\  \\  \\ \sf\:x =  \frac{5}{2}  \pm \sqrt{ \frac{25 - 16}{4} }  \\  \\  \\ \sf\:x =  \frac{5}{2}  \pm \sqrt{ \frac{9}{4} }  \\  2\\  \\ \sf\:x =  \frac{5}{2 }  \pm \frac{ \sqrt{9} }{ \sqrt{4} }  \\  \\  \\ \sf\:x =  \frac{5}{2}  \pm \frac{ \sqrt{3 {}^{2} } }{ \sqrt{4} }  \\  \\  \\ \sf\:x =  \frac{5}{2}  \pm \frac{ \sqrt{3 {}^{2} } }{ \sqrt{2 {}^{2} } }  \\  \\  \\  \sf\:x =  \frac{5}{2}  \pm \frac{3}{2}  \\  \\  \\  \sf\:x _{2}  =  \frac{5}{2}  +  \frac{3}{2}  \\  \\ \sf\:x _{1}  =  \frac{5}{2}  -  \frac{3}{2} \\   \\ \sf\:x =  \frac{5  + 3}{2}  \\  \\ \sf\:x _{2} =  \frac{8}{2}  \\  \\  \\ \sf\:x _{2} = 4 \\  \\  \\ \sf\:  x_{1} =  \frac{5 - 3}{2}  \\  \\  \\ \sf\:x_{1} =  \frac{2}{2}  \\  \\  \\ \sf\:x _{1} = 1 \\  \\  \\  \\  \\  \\ \sf\:Sol:\Bigg  \{x _{1} = 1, x_{2} = 4 \Bigg \}

Maior Raiz:

4

Att: Nerd1990

Perguntas interessantes