Matemática, perguntado por Lucasdiniz5908, 1 ano atrás

MACKENZIE - 1999 O menor valor inteiro de x tal que 9 log 3 ( x ) .3 log 9 ( x ) > 1 9log3(x).3log9(x)>1 é

Soluções para a tarefa

Respondido por adjemir
5

Vamos lá.



Veja, Lucasdiniz, que a resolução é mais ou menos simples.

Vamos tentar fazer tudo passo a passo para um melhor entendimento.



i) Pede-se o menor valor inteiro "x" tal que se tenha a seguinte inequação:



9log₃ (x) * 3log₉ (x) > 1 ----- note que a base "9" poderá ser substituída por 3². Logo, ficaremos da seguinte forma:



9log₃ (x) * 3*log₃² (x) > 1



Atente que deveremos ter, como condição de existência que "x" deverá ser, necessariamente positivo (>0). Logo, como condição de existência deveremos ter que:



x > 0



Como já vimos a condição de existência, agora vamos trabalhar com a expressão dada, que é esta:



9log₃(x) * 3log₃² (x) > 1.



Agora note isto e não esqueça mais: o INVERSO do EXPOENTE da BASE passa a multiplicar o respectivo log. Então iremos ficar assim:



9log₃ (x) * 3*(1/2)log₃ (x) > 1 ----- desenvolvendo, temos:


9log₃ (x) * (3/2)log₃ (x) > 1 ---- veja que na multiplicação a ordem dos fatores não altera o produto. Então iremos ficar assim:



9*(3/2)log₃ (x) * log₃ (x) > 1 ---- ou apenas:

(27/2)log₃ (x) * log₃ (x) > 1 ----- note que log₃ (x)*log₃ (x) = [log₃ (x)]² . Assim, teremos:

(27/2)*´[log₃ (x)]² > 1 ---- multiplicando-se em cruz, teremos:
[log₃ (x)] > 1/(27/2) ----- veja que 1/(27/2) = 2/27. Assim, ficaremos:

[log₃ (x)]² > 2/27 ------ veja que 2/27 = 0,0740 (aproximadamente). Logo:

[log₃ (x)]² > 0,0740 ---- daqui poderemos concluir que:

log₃ (x) > ± √(0,0740) ------ veja que √(0,0740) = 0,272 (aproximadamente). Logo:


log₃ (x) > ± 0,272



Agora note mais isto: quando se tem que logₐ (N) ± k, tem-se que:


-k > logₐ (n) > k



Então a nossa expressão irá ficar assim:



- 0,272 > log₃ (x) > 0,272 ---- note que isso é equivalente a:

log₃ (3⁻⁰ʼ²⁷²) > log₃ (x) > log₃ (3⁰ʼ²⁷²)

Como as bases são iguais, então poderemos comparar os logaritmandos da seguinte forma (note que sendo a base maior do que "1" então na comparação dos logaritmandos o faremos com o mesmo sentido que está na desigualdade):



3⁻⁰ʼ272 > x > 3⁰ʼ272 ---- ou, o que é a mesma coisa:

1/3⁰ʼ272 > x > 3⁰ʼ272 ----- note que 3⁰ʼ272 = 1,348 (aproximadamente). Logo:

1/1,348 > x >1,348 ------ como 1/1,348 = 0,742 (aproximado), temos:

0,742 > x > 1,348

Mas lembre-se de que há a condição de existência segundo a qual "x" tem que ser, necessariamente, maior do que zero. Então, conforme vimos aí em cima o intervalo deverá ser o seguinte:



0 < x < 0,742 ou x > 1,348



Ora, se "x' está no intervalo acima, então o menor inteiro que satisfaz está no segundo intervalo, quando temos que x > 1,348. E esse menor inteiro logo após "1,348" será o "2". Logo, o maior inteiro pedido será:


2 <--- Esta é a resposta. Ou seja, este é o menor inteiro para que a expressão logarítmica da sua questão seja verdadeira.



É isso aí.

Deu pra entender bem?

OK?

Adjemir.

adjemir: Agradecemos à moderadora Camponesa pela aprovação da nossa resposta. Um cordial abraço.
adjemir: E aí, Lucasdiniz, era isso mesmo o que você estava esperando?
Perguntas interessantes