LOGARITMOS- resolva as equações.
a) Log x+3 = 1
x-1
b)
c) ![Log_{ \frac{1}{3} } (X-1) = -2 Log_{ \frac{1}{3} } (X-1) = -2](https://tex.z-dn.net/?f=+Log_%7B+%5Cfrac%7B1%7D%7B3%7D+%7D+%28X-1%29+%3D+-2)
d) ![Log_{x} \frac{1}{9} = 2 Log_{x} \frac{1}{9} = 2](https://tex.z-dn.net/?f=+Log_%7Bx%7D++%5Cfrac%7B1%7D%7B9%7D++%3D+2)
e)
Soluções para a tarefa
Respondido por
3
Pela condição de existência
![C.E.\begin{cases}x>0~\to~para~o~logaritmando\\
x>0~~e~~x \neq 1~\to~para~a~base\end{cases} C.E.\begin{cases}x>0~\to~para~o~logaritmando\\
x>0~~e~~x \neq 1~\to~para~a~base\end{cases}](https://tex.z-dn.net/?f=C.E.%5Cbegin%7Bcases%7Dx%26gt%3B0%7E%5Cto%7Epara%7Eo%7Elogaritmando%5C%5C%0Ax%26gt%3B0%7E%7Ee%7E%7Ex+%5Cneq+1%7E%5Cto%7Epara%7Ea%7Ebase%5Cend%7Bcases%7D)
As equações acima, são equações logarítmicas da definição, e a definição é dada por:
![\boxed{log _{b}m=n~\to~b ^{n}=m} \boxed{log _{b}m=n~\to~b ^{n}=m}](https://tex.z-dn.net/?f=%5Cboxed%7Blog+_%7Bb%7Dm%3Dn%7E%5Cto%7Eb+%5E%7Bn%7D%3Dm%7D++)
_______________
![a)log( \frac{x+3}{x-1})=1\\\\
log _{10}( \frac{x+3}{x-1})=1\\\\
log _{10}( \frac{x+3}{x-1})=log _{10}10\\\\
Como~as~bases~sao~iguais,~podemos~elimina-las:\\\\
\frac{x+3}{x-1}=10\\\\
x+3=10(x-1)\\
x+3=10x-10\\
x-10x=-10-3\\
-9x=-13\\\\
\x= \frac{9}{13} a)log( \frac{x+3}{x-1})=1\\\\
log _{10}( \frac{x+3}{x-1})=1\\\\
log _{10}( \frac{x+3}{x-1})=log _{10}10\\\\
Como~as~bases~sao~iguais,~podemos~elimina-las:\\\\
\frac{x+3}{x-1}=10\\\\
x+3=10(x-1)\\
x+3=10x-10\\
x-10x=-10-3\\
-9x=-13\\\\
\x= \frac{9}{13}](https://tex.z-dn.net/?f=a%29log%28+%5Cfrac%7Bx%2B3%7D%7Bx-1%7D%29%3D1%5C%5C%5C%5C%0Alog+_%7B10%7D%28+%5Cfrac%7Bx%2B3%7D%7Bx-1%7D%29%3D1%5C%5C%5C%5C%0Alog+_%7B10%7D%28+%5Cfrac%7Bx%2B3%7D%7Bx-1%7D%29%3Dlog+_%7B10%7D10%5C%5C%5C%5C%0AComo%7Eas%7Ebases%7Esao%7Eiguais%2C%7Epodemos%7Eelimina-las%3A%5C%5C%5C%5C%0A+%5Cfrac%7Bx%2B3%7D%7Bx-1%7D%3D10%5C%5C%5C%5C%0Ax%2B3%3D10%28x-1%29%5C%5C%0Ax%2B3%3D10x-10%5C%5C%0Ax-10x%3D-10-3%5C%5C%0A-9x%3D-13%5C%5C%5C%5C%0A%5Cx%3D+%5Cfrac%7B9%7D%7B13%7D)
Raiz que satisfaz sem impedimento algum a condição de existência, logo:
![\boxed{S=\{ \frac{9}{13}\}} \boxed{S=\{ \frac{9}{13}\}}](https://tex.z-dn.net/?f=%5Cboxed%7BS%3D%5C%7B+%5Cfrac%7B9%7D%7B13%7D%5C%7D%7D+)
___________
![b)log _{3}x=4\\
3 ^{4}=x\\
x=81\\\\
\boxed{S=\{81\}} b)log _{3}x=4\\
3 ^{4}=x\\
x=81\\\\
\boxed{S=\{81\}}](https://tex.z-dn.net/?f=b%29log+_%7B3%7Dx%3D4%5C%5C%0A3++%5E%7B4%7D%3Dx%5C%5C%0Ax%3D81%5C%5C%5C%5C%0A%5Cboxed%7BS%3D%5C%7B81%5C%7D%7D+++)
___________
![c)log _{1/3}(x-1)=-2\\\\
( \frac{1}{3}) ^{-2}=x-1\\
(3 ^{-1}) ^{-2}=x-1\\
3 ^{2}=x-1\\
x-1=9\\
x=9+1\\
x=10\\\\
\boxed{S=\{10\}} c)log _{1/3}(x-1)=-2\\\\
( \frac{1}{3}) ^{-2}=x-1\\
(3 ^{-1}) ^{-2}=x-1\\
3 ^{2}=x-1\\
x-1=9\\
x=9+1\\
x=10\\\\
\boxed{S=\{10\}}](https://tex.z-dn.net/?f=c%29log+_%7B1%2F3%7D%28x-1%29%3D-2%5C%5C%5C%5C%0A%28+%5Cfrac%7B1%7D%7B3%7D%29+%5E%7B-2%7D%3Dx-1%5C%5C%0A%283+%5E%7B-1%7D%29+%5E%7B-2%7D%3Dx-1%5C%5C%0A3+%5E%7B2%7D%3Dx-1%5C%5C%0Ax-1%3D9%5C%5C%0Ax%3D9%2B1%5C%5C%0Ax%3D10%5C%5C%5C%5C%0A%5Cboxed%7BS%3D%5C%7B10%5C%7D%7D++++++)
___________
![d)log _{x} \frac{1}{9}=2\\\\
x^{2} = \frac{1}{9}\\\\
x= \sqrt{ \frac{1}{9} }\\\\
x=\pm \frac{1}{3}~\to~pela~condicao~de~existencia~para~a~base~somente\\\\
x= \frac{1}{3}~serve,~portanto:\\\\
\boxed{S=\{ \frac{1}{3}\}} d)log _{x} \frac{1}{9}=2\\\\
x^{2} = \frac{1}{9}\\\\
x= \sqrt{ \frac{1}{9} }\\\\
x=\pm \frac{1}{3}~\to~pela~condicao~de~existencia~para~a~base~somente\\\\
x= \frac{1}{3}~serve,~portanto:\\\\
\boxed{S=\{ \frac{1}{3}\}}](https://tex.z-dn.net/?f=d%29log+_%7Bx%7D+%5Cfrac%7B1%7D%7B9%7D%3D2%5C%5C%5C%5C%0A+x%5E%7B2%7D+%3D+%5Cfrac%7B1%7D%7B9%7D%5C%5C%5C%5C%0Ax%3D+%5Csqrt%7B+%5Cfrac%7B1%7D%7B9%7D+%7D%5C%5C%5C%5C%0Ax%3D%5Cpm+%5Cfrac%7B1%7D%7B3%7D%7E%5Cto%7Epela%7Econdicao%7Ede%7Eexistencia%7Epara%7Ea%7Ebase%7Esomente%5C%5C%5C%5C%0Ax%3D+%5Cfrac%7B1%7D%7B3%7D%7Eserve%2C%7Eportanto%3A%5C%5C%5C%5C%0A%5Cboxed%7BS%3D%5C%7B+%5Cfrac%7B1%7D%7B3%7D%5C%7D%7D+++++++)
___________
![log _{x}16=2\\
x^{2} =16\\
x= \sqrt{16}\\
x=\pm4\\\\
\boxed{S=\{4\}} log _{x}16=2\\
x^{2} =16\\
x= \sqrt{16}\\
x=\pm4\\\\
\boxed{S=\{4\}}](https://tex.z-dn.net/?f=log+_%7Bx%7D16%3D2%5C%5C%0A+x%5E%7B2%7D+%3D16%5C%5C%0Ax%3D+%5Csqrt%7B16%7D%5C%5C%0Ax%3D%5Cpm4%5C%5C%5C%5C%0A%5Cboxed%7BS%3D%5C%7B4%5C%7D%7D++)
Espero ter ajudado e tenha ótimos estudos ;D
As equações acima, são equações logarítmicas da definição, e a definição é dada por:
_______________
Raiz que satisfaz sem impedimento algum a condição de existência, logo:
___________
___________
___________
___________
Espero ter ajudado e tenha ótimos estudos ;D
korvo:
brigadu pela melhor rsp ;D
Perguntas interessantes