log de 2 raiz de 2 na base 1/4
Soluções para a tarefa
Respondido por
3
Usando da definição de ㏒
![\large\fbox{$y=\ell og_a(b)~\Longrightarrow~a^y=b$}~~~~(0\ \textless \ a \neq 1) \large\fbox{$y=\ell og_a(b)~\Longrightarrow~a^y=b$}~~~~(0\ \textless \ a \neq 1)](https://tex.z-dn.net/?f=%5Clarge%5Cfbox%7B%24y%3D%5Cell+og_a%28b%29%7E%5CLongrightarrow%7Ea%5Ey%3Db%24%7D%7E%7E%7E%7E%280%5C+%5Ctextless+%5C+a+%5Cneq+1%29)
Portanto
![\large\begin{array}{l}y=\ell og_{\frac{1}{4}}(2\sqrt{2})~\Leftrightarrow~(\dfrac{1}{4})^y=2\sqrt{2}\end{array} \large\begin{array}{l}y=\ell og_{\frac{1}{4}}(2\sqrt{2})~\Leftrightarrow~(\dfrac{1}{4})^y=2\sqrt{2}\end{array}](https://tex.z-dn.net/?f=%5Clarge%5Cbegin%7Barray%7D%7Bl%7Dy%3D%5Cell+og_%7B%5Cfrac%7B1%7D%7B4%7D%7D%282%5Csqrt%7B2%7D%29%7E%5CLeftrightarrow%7E%28%5Cdfrac%7B1%7D%7B4%7D%29%5Ey%3D2%5Csqrt%7B2%7D%5Cend%7Barray%7D)
Agora temos que ter em mente as seguintes propriedades exponenciais:
![\large\fbox{$a^{-1}=\dfrac{1}{a}$}\\\\\large\fbox{$\sqrt[n]{a^m}=a^{\frac{m}{n}}$}\\\\\large\fbox{$(a^m)^n=a^{m\cdot n}$} \large\fbox{$a^{-1}=\dfrac{1}{a}$}\\\\\large\fbox{$\sqrt[n]{a^m}=a^{\frac{m}{n}}$}\\\\\large\fbox{$(a^m)^n=a^{m\cdot n}$}](https://tex.z-dn.net/?f=%5Clarge%5Cfbox%7B%24a%5E%7B-1%7D%3D%5Cdfrac%7B1%7D%7Ba%7D%24%7D%5C%5C%5C%5C%5Clarge%5Cfbox%7B%24%5Csqrt%5Bn%5D%7Ba%5Em%7D%3Da%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%7D%24%7D%5C%5C%5C%5C%5Clarge%5Cfbox%7B%24%28a%5Em%29%5En%3Da%5E%7Bm%5Ccdot+n%7D%24%7D)
Então
![\large\begin{array}{l}(\dfrac{1}{4})^y=2\sqrt{2}\\\\(4^{-1})^y=\sqrt{2^2\cdot2}\\\\4^{-y}=\sqrt{2^3}\\\\(2^2)^{-y}=2^{\frac{3}{2}}\\\\2^{-2y}=2^{\frac{3}{2}}\end{array} \large\begin{array}{l}(\dfrac{1}{4})^y=2\sqrt{2}\\\\(4^{-1})^y=\sqrt{2^2\cdot2}\\\\4^{-y}=\sqrt{2^3}\\\\(2^2)^{-y}=2^{\frac{3}{2}}\\\\2^{-2y}=2^{\frac{3}{2}}\end{array}](https://tex.z-dn.net/?f=%5Clarge%5Cbegin%7Barray%7D%7Bl%7D%28%5Cdfrac%7B1%7D%7B4%7D%29%5Ey%3D2%5Csqrt%7B2%7D%5C%5C%5C%5C%284%5E%7B-1%7D%29%5Ey%3D%5Csqrt%7B2%5E2%5Ccdot2%7D%5C%5C%5C%5C4%5E%7B-y%7D%3D%5Csqrt%7B2%5E3%7D%5C%5C%5C%5C%282%5E2%29%5E%7B-y%7D%3D2%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%5C%5C%5C%5C2%5E%7B-2y%7D%3D2%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%5Cend%7Barray%7D)
Agora nós temos uma igualdade entre potências de mesma base, o que implica em
![\large\fbox{$a^b=a^c~\Longleftrightarrow~b=c$}~~(0\ \textless \ a \neq 1) \large\fbox{$a^b=a^c~\Longleftrightarrow~b=c$}~~(0\ \textless \ a \neq 1)](https://tex.z-dn.net/?f=%5Clarge%5Cfbox%7B%24a%5Eb%3Da%5Ec%7E%5CLongleftrightarrow%7Eb%3Dc%24%7D%7E%7E%280%5C+%5Ctextless+%5C+a+%5Cneq+1%29)
Sendo assim
![\large\begin{array}{l}2^{-2y}=2^{\frac{3}{2}}~\Longleftrightarrow~-2y=\dfrac{3}{2}\\\\-2y=\dfrac{3}{2}\\\\y=\dfrac{3}{2}\cdot(-\dfrac{1}{2})\\\\\fbox{$y=-\dfrac{3}{4}$}\\\\\fbox{$\ell og_{\frac{1}{4}}(2\sqrt{2})=-\dfrac{3}{4}$}~~\leftarrow~~\text{resposta}\end{array} \large\begin{array}{l}2^{-2y}=2^{\frac{3}{2}}~\Longleftrightarrow~-2y=\dfrac{3}{2}\\\\-2y=\dfrac{3}{2}\\\\y=\dfrac{3}{2}\cdot(-\dfrac{1}{2})\\\\\fbox{$y=-\dfrac{3}{4}$}\\\\\fbox{$\ell og_{\frac{1}{4}}(2\sqrt{2})=-\dfrac{3}{4}$}~~\leftarrow~~\text{resposta}\end{array}](https://tex.z-dn.net/?f=%5Clarge%5Cbegin%7Barray%7D%7Bl%7D2%5E%7B-2y%7D%3D2%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7E%5CLongleftrightarrow%7E-2y%3D%5Cdfrac%7B3%7D%7B2%7D%5C%5C%5C%5C-2y%3D%5Cdfrac%7B3%7D%7B2%7D%5C%5C%5C%5Cy%3D%5Cdfrac%7B3%7D%7B2%7D%5Ccdot%28-%5Cdfrac%7B1%7D%7B2%7D%29%5C%5C%5C%5C%5Cfbox%7B%24y%3D-%5Cdfrac%7B3%7D%7B4%7D%24%7D%5C%5C%5C%5C%5Cfbox%7B%24%5Cell+og_%7B%5Cfrac%7B1%7D%7B4%7D%7D%282%5Csqrt%7B2%7D%29%3D-%5Cdfrac%7B3%7D%7B4%7D%24%7D%7E%7E%5Cleftarrow%7E%7E%5Ctext%7Bresposta%7D%5Cend%7Barray%7D)
Portanto
Agora temos que ter em mente as seguintes propriedades exponenciais:
Então
Agora nós temos uma igualdade entre potências de mesma base, o que implica em
Sendo assim
viniciushenrique406:
Caso tenha dificuldades para visualizar a resposta (ex: [tex][/tex]) tente abrir pelo seu navegador: http://brainly.com.br/tarefa/7847171
Perguntas interessantes
Artes,
11 meses atrás
Matemática,
11 meses atrás
Matemática,
11 meses atrás
Matemática,
1 ano atrás
Química,
1 ano atrás
Biologia,
1 ano atrás