Matemática, perguntado por reenatacella, 1 ano atrás

Log 3/2 na base 1/2
preciso de esclarecimento como resolver

Soluções para a tarefa

Respondido por deividsilva784
0
 Log_{ \frac{1}{2} }  \frac{3}{2}

Use a regra de iverte a base, trocando o sinal.

 Log_{ \frac{1}{a} } b =  -Log_{a} b

Então teremos:

 Log_{ \frac{1}{2} }  \frac{3}{2}  = - Log_{2}  \frac{3}{2}

Use a propriedade da subtração:


 Log_{a}  \frac{b}{c}  =  Log_{a} b -  Log_{a}c

Então fica:



 -Log_{ 2 }  \frac{3}{2}  = - [  Log_{2} 3 -  Log_{2} 2]

Log 2 = 1 por propriedade: 
      ²

então:


 \\ - [Log_{2 } 3 -1]
 \\ 
 \\ 1 - log_{2}3

Aplica mudança de base. Para 10:


 Log_{a} b =  \frac{ Log_{c}b }{ Log_{c} a}



 \\  Log_{2} 3 =  \frac{ Log_{10} 3}{ Log_{10}2 } 
 \\ 
 \\ =  -\frac{0,47712}{0,3010} 
 \\ 
 \\ = 1,5849

Então o resultado seria:

1 - log 3 =
         ²

1 - 1,5849 =

≈ -,05849




Perguntas interessantes