Matemática, perguntado por Marcosvini1111, 1 ano atrás

log 2 ( x -2 ) + log 2 ( x- 3 ) = 1 + log 2 ( 2x - 7 )

Soluções para a tarefa

Respondido por superaks
3
Sabendo que o logaritmando tem que ser maior que 0 temos:

intersecção 

\mathsf{Condic\~ao~de~exist\^encia~dos~logaritmando}\\\\\mathsf{C.E\begin{cases}x-2\ \textgreater \ 0~~|~x\ \textgreater \ 2\\x-3\ \textgreater \ 0~~|~x\ \textgreater \ 3\\2x-7\ \textgreater \ 0~|~x\ \textgreater \ \frac{7}{2}\end{cases}}\\\\\\\mathsf{Fazendo~a~interscecc\~ao~de~x~temos}\\\\\\\mathsf{C.E=x\ \textgreater \ \frac{7}{2}}

\mathsf{\ell og_2(x-2)+\ell og_2(x-3)=1+\ell og_2(2x-7)}\\\mathsf{\ell og_2([x-2]\cdot[x-3])}=\ell og_22+\ell og_2(2x-7)\\\mathsf{\ell og_2(x^2-3x-2x+6)=\ell og(2\cdot[2x-7]})\\\mathsf{\ell og_2(x^2-5x+6)=\ell og(4x-14)}\\\\\mathsf{x^2-5x+6=4x-14}\\\mathsf{x^2-9x+20=0}\\\\\mathsf{\Delta=(-9)^2-4.1.20}\\\mathsf{\Delta=81-80}\\\mathsf{\Delta=1}\\\\\mathsf{x=\dfrac{-(-9)\pm\sqrt{1}}{2.1}}\\\\\mathsf{x=\dfrac{9+1}{2}}\\\\\\\boxed{\mathsf{x=5}}\\\\\\\\\mathsf{x'=\dfrac{9-1}{2}}\\\\\\\boxed{\mathsf{x'=4}}

\mathsf{S=x\begin{cases}5\\4\end{cases}}

Dúvidas? comente

Marcosvini1111: Muito obrigado vlw
superaks: Bons estudos :^)
Marcosvini1111: obg
Perguntas interessantes