Log 0,2 ³√25
Log 0,01
Log 1,25 0,64
Log 5/3 0,6
Soluções para a tarefa
Respondido por
106
oK!
Definição de logaritmo
![log^{b}_{a} =x\ \textless \ -\ \textgreater \ a ^{x} = b log^{b}_{a} =x\ \textless \ -\ \textgreater \ a ^{x} = b](https://tex.z-dn.net/?f=log%5E%7Bb%7D_%7Ba%7D+%3Dx%5C+%5Ctextless+%5C+-%5C+%5Ctextgreater+%5C+a+%5E%7Bx%7D+%3D+b)
Resolvendo
![log _{0,2} ^{ \sqrt[3]{25} } \\ \\ 0,2 ^{x} = \sqrt[3]{25} \\ \\ (\dfrac{2}{10}) ^{x} =25 ^{ \frac{1}{3} } \\ \\ \\ (\dfrac{1}{5})^{x}= (5 ^{2}) ^{ \frac{1}{3} } \\ \\ \\ 5 ^{-x} =5 ^{ \frac{2}{3} } \\ \\ \\ -x=\dfrac{2}{3} \\ \\ \\ x=-\dfrac{2}{3} log _{0,2} ^{ \sqrt[3]{25} } \\ \\ 0,2 ^{x} = \sqrt[3]{25} \\ \\ (\dfrac{2}{10}) ^{x} =25 ^{ \frac{1}{3} } \\ \\ \\ (\dfrac{1}{5})^{x}= (5 ^{2}) ^{ \frac{1}{3} } \\ \\ \\ 5 ^{-x} =5 ^{ \frac{2}{3} } \\ \\ \\ -x=\dfrac{2}{3} \\ \\ \\ x=-\dfrac{2}{3}](https://tex.z-dn.net/?f=log+_%7B0%2C2%7D++%5E%7B+%5Csqrt%5B3%5D%7B25%7D+%7D++%5C%5C++%5C%5C+0%2C2+%5E%7Bx%7D+%3D+%5Csqrt%5B3%5D%7B25%7D+%5C%5C++%5C%5C++%28%5Cdfrac%7B2%7D%7B10%7D%29+%5E%7Bx%7D+%3D25+%5E%7B+%5Cfrac%7B1%7D%7B3%7D+%7D++%5C%5C+++%5C%5C+%5C%5C++%28%5Cdfrac%7B1%7D%7B5%7D%29%5E%7Bx%7D%3D+%285+%5E%7B2%7D%29+%5E%7B+%5Cfrac%7B1%7D%7B3%7D+%7D+%5C%5C++%5C%5C++%5C%5C+5+%5E%7B-x%7D+%3D5+%5E%7B+%5Cfrac%7B2%7D%7B3%7D+%7D++%5C%5C++%5C%5C++%5C%5C+-x%3D%5Cdfrac%7B2%7D%7B3%7D+%5C%5C++%5C%5C++%5C%5C+x%3D-%5Cdfrac%7B2%7D%7B3%7D)
----------------------------------------------------------
![log0,01 \\ \\ 10 ^{x} =0,01 \\ \\ 10 ^{x}= \dfrac{1}{100} \\ \\ 10 ^{x}=10 ^{-2} \\ \\ x=-2 log0,01 \\ \\ 10 ^{x} =0,01 \\ \\ 10 ^{x}= \dfrac{1}{100} \\ \\ 10 ^{x}=10 ^{-2} \\ \\ x=-2](https://tex.z-dn.net/?f=log0%2C01+%5C%5C++%5C%5C+10+%5E%7Bx%7D+%3D0%2C01+%5C%5C++%5C%5C++10+%5E%7Bx%7D%3D+%5Cdfrac%7B1%7D%7B100%7D++%5C%5C++%5C%5C++10+%5E%7Bx%7D%3D10+%5E%7B-2%7D++%5C%5C++%5C%5C+x%3D-2)
-----------------------------------------------------------
![log _{1,25} ^{0,64} \\ \\ \\ 1,25 ^{x} =0,64 \\ \\ \\ ( \dfrac{125}{100}) ^{x}= \dfrac{64}{100} \\ \\ \\ (\dfrac{5}{4} ) ^{x}= \dfrac{16 }{25} \\ \\ \\ (\dfrac{5}{4} ) ^{x}= (\dfrac{4}{5})^{2} \\ \\ \\ (\dfrac{5}{4} ) ^{x}= (\dfrac{5}{4} ) ^{-2 } \\ \\ x=-2 log _{1,25} ^{0,64} \\ \\ \\ 1,25 ^{x} =0,64 \\ \\ \\ ( \dfrac{125}{100}) ^{x}= \dfrac{64}{100} \\ \\ \\ (\dfrac{5}{4} ) ^{x}= \dfrac{16 }{25} \\ \\ \\ (\dfrac{5}{4} ) ^{x}= (\dfrac{4}{5})^{2} \\ \\ \\ (\dfrac{5}{4} ) ^{x}= (\dfrac{5}{4} ) ^{-2 } \\ \\ x=-2](https://tex.z-dn.net/?f=log+_%7B1%2C25%7D++%5E%7B0%2C64%7D++%5C%5C++%5C%5C++%5C%5C+1%2C25+%5E%7Bx%7D+%3D0%2C64+%5C%5C++%5C%5C++%5C%5C+%28+%5Cdfrac%7B125%7D%7B100%7D%29+%5E%7Bx%7D%3D+%5Cdfrac%7B64%7D%7B100%7D++%5C%5C++%5C%5C++%5C%5C++%28%5Cdfrac%7B5%7D%7B4%7D+%29+%5E%7Bx%7D%3D+%5Cdfrac%7B16+%7D%7B25%7D++%5C%5C++%5C%5C++%5C%5C++%28%5Cdfrac%7B5%7D%7B4%7D+%29+%5E%7Bx%7D%3D+%28%5Cdfrac%7B4%7D%7B5%7D%29%5E%7B2%7D+++%5C%5C++%5C%5C++%5C%5C++%28%5Cdfrac%7B5%7D%7B4%7D+%29+%5E%7Bx%7D%3D+%28%5Cdfrac%7B5%7D%7B4%7D+%29+%5E%7B-2+%7D+%5C%5C++%5C%5C+x%3D-2)
------------------------------------------------------------
![log _{ \frac{5}{3} } ^{0,6} \\ \\ (\dfrac{5}{3} ) ^{x} =0,6 \\ \\ \\ (\dfrac{5}{3} ) ^{x}= \dfrac{6}{10} \\ \\ \\ (\dfrac{5}{3} ) ^{x}= \dfrac{3}{5} \\ \\ \\ (\dfrac{5}{3} ) ^{x}= (\dfrac{5}{3}) ^{-1} \\ \\ x=-1 log _{ \frac{5}{3} } ^{0,6} \\ \\ (\dfrac{5}{3} ) ^{x} =0,6 \\ \\ \\ (\dfrac{5}{3} ) ^{x}= \dfrac{6}{10} \\ \\ \\ (\dfrac{5}{3} ) ^{x}= \dfrac{3}{5} \\ \\ \\ (\dfrac{5}{3} ) ^{x}= (\dfrac{5}{3}) ^{-1} \\ \\ x=-1](https://tex.z-dn.net/?f=log+_%7B+%5Cfrac%7B5%7D%7B3%7D+%7D++%5E%7B0%2C6%7D++%5C%5C++%5C%5C+%28%5Cdfrac%7B5%7D%7B3%7D+%29+%5E%7Bx%7D+%3D0%2C6+%5C%5C++%5C%5C++%5C%5C++%28%5Cdfrac%7B5%7D%7B3%7D+%29+%5E%7Bx%7D%3D+%5Cdfrac%7B6%7D%7B10%7D++%5C%5C++%5C%5C++%5C%5C++%28%5Cdfrac%7B5%7D%7B3%7D+%29+%5E%7Bx%7D%3D+%5Cdfrac%7B3%7D%7B5%7D++%5C%5C++%5C%5C++%5C%5C++%28%5Cdfrac%7B5%7D%7B3%7D+%29+%5E%7Bx%7D%3D+%28%5Cdfrac%7B5%7D%7B3%7D%29+%5E%7B-1%7D+%5C%5C++%5C%5C+x%3D-1)
Definição de logaritmo
Resolvendo
----------------------------------------------------------
-----------------------------------------------------------
------------------------------------------------------------
Perguntas interessantes
Biologia,
11 meses atrás
História,
11 meses atrás
Matemática,
1 ano atrás
Biologia,
1 ano atrás
Administração,
1 ano atrás