Limite x2 + 5x + 6/ x +2 quando x tende a 2
Soluções para a tarefa
Respondido por
0
Lim (x²+5x+6)/(x+2)
x-->2
p(x)=ax²+bx+c=a*(x-x')*(x-x'') ...a≠0 , x' e x'' são as raízes
x²+5x+6=0
x'=[-5+√(25-24)]/2 =[-5+1]/2=-2
x''=[-5-√(25-24)]/2 =[-5-1]/2=-3
x²+5x+6=(x+2)(x+3)
Lim (x²+5x+6)/(x+2)
x-->2
Lim (x+2)(x+3)/(x+2)
x-->2
Lim (x+3) =2+3=5
x-->2
x-->2
p(x)=ax²+bx+c=a*(x-x')*(x-x'') ...a≠0 , x' e x'' são as raízes
x²+5x+6=0
x'=[-5+√(25-24)]/2 =[-5+1]/2=-2
x''=[-5-√(25-24)]/2 =[-5-1]/2=-3
x²+5x+6=(x+2)(x+3)
Lim (x²+5x+6)/(x+2)
x-->2
Lim (x+2)(x+3)/(x+2)
x-->2
Lim (x+3) =2+3=5
x-->2
Perguntas interessantes