Matemática, perguntado por Dostoievski1, 1 ano atrás

Lim (x²-4)/(√(x+2)-√(3x-2)), x-->2
Resolva fatorando

Soluções para a tarefa

Respondido por Lukyo
2
\underset{x \to 2}{\mathrm{\ell im}}\;\dfrac{x^{2}-4}{\sqrt{x+2}-\sqrt{3x-2}}\\ \\ =\underset{x \to 2}{\mathrm{\ell im}}\;\dfrac{\left(x-2 \right )\cdot \left(x+2 \right )}{\sqrt{x+2}-\sqrt{3x-2}}


Multiplicando o numerador e o denominador por 
\left(\sqrt{x+2}+\sqrt{3x-2} \right ), para eliminar as raízes do denominador:

\underset{x \to 2}{\mathrm{\ell im}}\;\dfrac{\left(x-2 \right )\cdot \left(x+2 \right )\cdot \left(\sqrt{x+2}+\sqrt{3x-2} \right )}{\left(\sqrt{x+2}-\sqrt{3x-2} \right )\cdot \left(\sqrt{x+2}+\sqrt{3x-2} \right )}\\ \\ =\underset{x \to 2}{\mathrm{\ell im}}\;\dfrac{\left(x-2 \right )\cdot \left(x+2 \right )\cdot \left(\sqrt{x+2}+\sqrt{3x-2} \right )}{\left(\sqrt{x+2} \right )^{2}-\left(\sqrt{3x-2} \right )^{2}}\\ \\ =\underset{x \to 2}{\mathrm{\ell im}}\;\dfrac{\left(x-2 \right )\cdot \left(x+2 \right )\cdot \left(\sqrt{x+2}+\sqrt{3x-2} \right )}{\left(x+2 \right )-\left(3x-2 \right )}\\ \\ =\underset{x \to 2}{\mathrm{\ell im}}\;\dfrac{\left(x-2 \right )\cdot \left(x+2 \right )\cdot \left(\sqrt{x+2}+\sqrt{3x-2} \right )}{x+2-3x+2}\\ \\ =\underset{x \to 2}{\mathrm{\ell im}}\;\dfrac{\left(x-2 \right )\cdot \left(x+2 \right )\cdot \left(\sqrt{x+2}+\sqrt{3x-2} \right )}{-2x+4}

=\underset{x \to 2}{\mathrm{\ell im}}\;\dfrac{\left(x-2 \right )\cdot \left(x+2 \right )\cdot \left(\sqrt{x+2}+\sqrt{3x-2} \right )}{-2\cdot \left(x-2 \right )}


Cancelando o fator 
\left(x-2 \right ), no numerador e no denominador, temos

\underset{x \to 2}{\mathrm{\ell im}}\;\dfrac{\left(x+2 \right )\cdot \left(\sqrt{x+2}+\sqrt{3x-2} \right )}{-2}\\ \\ =\dfrac{\left(2+2 \right )\cdot \left(\sqrt{2+2}+\sqrt{3\cdot 2-2} \right )}{-2}\\ \\ =\dfrac{4\cdot \left(\sqrt{4}+\sqrt{6-2} \right )}{-2}\\ \\ =\dfrac{4\cdot \left(\sqrt{4}+\sqrt{4} \right )}{-2}\\ \\ =\dfrac{4\cdot \left(2+2 \right )}{-2}\\ \\ =\dfrac{4\cdot 4}{-2}\\ \\ =\dfrac{16}{-2}\\ \\ =-8\\ \\ \\ \boxed{ \begin{array}{c} \underset{x \to 2}{\mathrm{\ell im}}\;\dfrac{x^{2}-4}{\sqrt{x+2}-\sqrt{3x-2}}=-8 \end{array} }

Perguntas interessantes