Lim x tende 0 ((2^t)-1)/t?
Lukyo:
Pode usar a regra de L'Hôpital ou não?
Soluções para a tarefa
Respondido por
0
Calcular o limite
![L=\underset{t \to 0}{\mathrm{\ell im}}\,\dfrac{2^{t}-1}{t} L=\underset{t \to 0}{\mathrm{\ell im}}\,\dfrac{2^{t}-1}{t}](https://tex.z-dn.net/?f=L%3D%5Cunderset%7Bt+%5Cto+0%7D%7B%5Cmathrm%7B%5Cell+im%7D%7D%5C%2C%5Cdfrac%7B2%5E%7Bt%7D-1%7D%7Bt%7D)
No limite acima, temos uma indeterminação do tipo
Logo, podemos usar a regra de L'Hôpital para resolver:
Se o limite
existir (finito ou infinito), então
![\underset{t \to 0}{\mathrm{\ell im}}\,\dfrac{2^{t}-1}{t}=\underset{t \to 0}{\mathrm{\ell im}}\,\dfrac{\frac{d}{dt}(2^{t}-1)}{\frac{d}{dt}(t)} \underset{t \to 0}{\mathrm{\ell im}}\,\dfrac{2^{t}-1}{t}=\underset{t \to 0}{\mathrm{\ell im}}\,\dfrac{\frac{d}{dt}(2^{t}-1)}{\frac{d}{dt}(t)}](https://tex.z-dn.net/?f=%5Cunderset%7Bt+%5Cto+0%7D%7B%5Cmathrm%7B%5Cell+im%7D%7D%5C%2C%5Cdfrac%7B2%5E%7Bt%7D-1%7D%7Bt%7D%3D%5Cunderset%7Bt+%5Cto+0%7D%7B%5Cmathrm%7B%5Cell+im%7D%7D%5C%2C%5Cdfrac%7B%5Cfrac%7Bd%7D%7Bdt%7D%282%5E%7Bt%7D-1%29%7D%7B%5Cfrac%7Bd%7D%7Bdt%7D%28t%29%7D)
Vamos calcular o limite pela regra de L'Hôpital:
![\underset{t \to 0}{\mathrm{\ell im}}\,\dfrac{\frac{d}{dt}(2^{t}-1)}{\frac{d}{dt}(t)}\\ \\ \\ =\underset{t \to 0}{\mathrm{\ell im}}\,\dfrac{2^{t}\,\mathrm{\ell n\,}{2}}{1}\\ \\ \\ =2^{0}\,\mathrm{\ell n\,}{2}\\ \\ =\mathrm{\ell n\,}{2} \underset{t \to 0}{\mathrm{\ell im}}\,\dfrac{\frac{d}{dt}(2^{t}-1)}{\frac{d}{dt}(t)}\\ \\ \\ =\underset{t \to 0}{\mathrm{\ell im}}\,\dfrac{2^{t}\,\mathrm{\ell n\,}{2}}{1}\\ \\ \\ =2^{0}\,\mathrm{\ell n\,}{2}\\ \\ =\mathrm{\ell n\,}{2}](https://tex.z-dn.net/?f=%5Cunderset%7Bt+%5Cto+0%7D%7B%5Cmathrm%7B%5Cell+im%7D%7D%5C%2C%5Cdfrac%7B%5Cfrac%7Bd%7D%7Bdt%7D%282%5E%7Bt%7D-1%29%7D%7B%5Cfrac%7Bd%7D%7Bdt%7D%28t%29%7D%5C%5C+%5C%5C+%5C%5C+%3D%5Cunderset%7Bt+%5Cto+0%7D%7B%5Cmathrm%7B%5Cell+im%7D%7D%5C%2C%5Cdfrac%7B2%5E%7Bt%7D%5C%2C%5Cmathrm%7B%5Cell+n%5C%2C%7D%7B2%7D%7D%7B1%7D%5C%5C+%5C%5C+%5C%5C+%3D2%5E%7B0%7D%5C%2C%5Cmathrm%7B%5Cell+n%5C%2C%7D%7B2%7D%5C%5C+%5C%5C+%3D%5Cmathrm%7B%5Cell+n%5C%2C%7D%7B2%7D)
Portanto,
![L=\underset{t \to 0}{\mathrm{\ell im}}\,\dfrac{2^{t}-1}{t}=\mathrm{\ell n\,}{2} L=\underset{t \to 0}{\mathrm{\ell im}}\,\dfrac{2^{t}-1}{t}=\mathrm{\ell n\,}{2}](https://tex.z-dn.net/?f=L%3D%5Cunderset%7Bt+%5Cto+0%7D%7B%5Cmathrm%7B%5Cell+im%7D%7D%5C%2C%5Cdfrac%7B2%5E%7Bt%7D-1%7D%7Bt%7D%3D%5Cmathrm%7B%5Cell+n%5C%2C%7D%7B2%7D)
No limite acima, temos uma indeterminação do tipo
Se o limite
Perguntas interessantes