Matemática, perguntado por kingbruno3, 11 meses atrás

lim (x^9-1)/(x^3-1 )
x->1

Soluções para a tarefa

Respondido por Usuário anônimo
1

Explicação passo-a-passo:

\sf lim_{x\to~1}~\dfrac{x^9-1}{x^3-1}

\sf =lim_{x\to~1}~\dfrac{(x^3)^3-1}{x^3-1}

\sf =lim_{x\to~1}~\dfrac{(x^3-1)\cdot(x^6+x^3+1)}{x^3-1}

\sf =lim_{x\to~1}~(x^6+x^3+1)

\sf =1^6+1^3+1

\sf =1+1+1

\sf =3

Respondido por Makaveli1996
0

Oie, Td Bom?!

 =  lim_{x⟶1}(  \frac{x {}^{9}  - 1}{x {}^{3} - 1 } )

 =  lim_{x⟶1}( \frac{(x {}^{3} ) {}^{3} - 1 {}^{3}  }{x {}^{3} - 1 } )

 =  lim_{x⟶1}( \frac{(x {}^{3}  - 1) \: . \: (x {}^{6} + x {}^{3} + 1)  }{x {}^{3}  - 1} )

 =  lim_{x⟶1}(x {}^{6} + x {}^{3}  + 1 )

 =  lim_{x⟶1}(x {}^{6}  + x {}^{3} ) +  lim_{x⟶1}(1)

 =  lim_{x⟶1}(x {}^{6} )  +  lim_{x⟶1}(x {}^{3} )  + 1

 = ( lim_{x⟶1}(x) ) {}^{6}  + ( lim_{x⟶1}(x) ) {}^{3}  + 1

 = 1 {}^{6}  + 1 {}^{3}  + 1

 = 1 + 1 + 1

 = 2 + 1

 = 3

Att. Makaveli1996

Perguntas interessantes