Matemática, perguntado por Hanna2F, 1 ano atrás

Lim x^3+8/x+2 quando x tende a menos 2

Soluções para a tarefa

Respondido por TheAprendiz
3

  \displaystyle\lim_{x \to -2} \dfrac{x^3+8}{x+2} = \displaystyle\lim_{x \to -2} \dfrac{(-2)^3+8}{-2+2} = \dfrac{-8+8}{-2+2}=\dfrac{0}{0} \\ \\<br />\displaystyle\lim_{x \to -2} \dfrac{x^3+8}{x+2} = \displaystyle\lim_{x \to -2} \dfrac{x^3+2^3}{x+2}= \\ \\ \displaystyle\lim_{x \to -2} \dfrac{(x+2)(x^2-2x+4)}{x+2}=\displaystyle\lim_{x \to -2} x^2-2x+4 = 12

Respondido por Usuário anônimo
1

(x+2)³=x³+3*x²*2+3*x*2²+2³


(x+2)³=x³+2³+3*x²*2+3*x*2²


(x+2)³=x³+2³+3*x*2*(x+2)


x³+2³= (x+2)³- 6x*(x+2)


x³+2³= (x+2)*[(x+2)²-6x]


x³+8= (x+2)*[x²+4x+4-6x]


x³+8= (x+2)*(x²+4-2x)


###############################


Lim (x³+8)/(x+2)

x-->-2


Lim (x+2)*(x²+4-2x)/(x+2)

x-->-2


Lim (x²+4-2x) =(-2)²+4 -2*(-2) =4 +4+4=12

x-->-2




Perguntas interessantes