José possui um supermercado e pretende organizar de 100 a 150 detergentes, de três marcas distintas, na prateleira de produtos de limpeza, agrupando-os de 12 em 12, de 15 em 15 ou de 20 em 20, mas sempre restando um. Quantos detergentes José tem em seu supermercado?
Soluções para a tarefa
Resposta:
Se José arruma os detergentes em grupos de múltiplos de 12, 15 ou 20, e sobra 1, vamos então encontrar o mínimo múltiplo comum entre esses números e adicionaremos 1 ao resultado. Vejamos:
12, 15, 20 | 2
12, 15, 20 | 26 , 15 , 10 | 2
12, 15, 20 | 26 , 15 , 10 | 2 3 , 15 , 5 | 3
1 , 5 , 5 | 5
, 5 , 5 | 5 1 , 1 , 1 |
Temos que multiplicar os números que apareceram à direita: 2 x 2 x 3 x 5 = 60. Todos os múltiplos de 60 serão também múltiplos comuns a 12, 15 e 20. Vejamos os múltiplos de 60:
M(60) = {0, 60, 120, 180, 240, ...}
Você pode observar que o único dos múltiplos de 60 que se encaixa na quantidade de detergentes do supermercado de José é o 120. Mas falta ainda acrescentarmos aquele detergente que sempre restava, portanto, podemos concluir que no supermercado de José havia 121 detergentes.
Exercício envolvendo MMC.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
José pretende organizar de 100 a 150 detergentes de três marcas distintas , agrupando-os de :
12 em 12
15 em 15
20 em 20
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Temos que tirar o MMC desses três números , encontrar um múltiplo dos três números ao mesmo tempo entre 100 a 150 , e ao final somar o detergente que resta/sobra.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Logo temos : 2 * 2 * 3 * 5 = 60
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Agora vamos aos múltiplos de 60 :
M(60) => (0, 60, 120, 180, 240)
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Note que apenas o 120 nos satisfaz , pois o 180 ultrapassa o valor maior (150) .
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Logo adicionando o detergente que resta temos :
120 + 1 = 121
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
José tem 121 detergentes em seu supermercado.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Espero ter ajudado ! :D