Joga-se um dado de seis faces, não viciado, até sair o 6 pela primeira vez. A probabilidade de sair o 6 antes do terceiro lançamento é:
Soluções para a tarefa
A probabilidade de sair “6” no primeiro lançamento é igual a P = 1/6 mas
A probabilidade de sair 6 no segundo lançamento …implica que NÃO SAIU “6” no primeiro
lançamento, assim a probabilidade do segundo lançamento fica definida por:
P = (5/6).(1/6)
P = 5/36
Logo a probabilidade de sair “6” no 1º OU no 2º lançamento será dada por:
P = (1/6) + (5/36) …como m m c = 36 ..então
P = (6 + 5)/36
*P = 11/36 <--probabilidade pedida
BONS ESTUDO!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Em um dado , temos faces numeradas de 1 a 6.
⚀⚁⚂⚃⚄⚅
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
O dado é jogado ''N'' vezes até que se obtenha a face 6 pela primeira vez. A questão quer a probabilidade de que "N" (quantidade de jogadas) seja menor que 3 , ou seja , a questão pede a probabilidade de jogar 1 ou 2 vezes.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
OBS : Lembrando que ''ou'' significa soma.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Usaremos a fórmula:
P = CF/CP
Onde:
P = PROBABILIDADE
CF = CASOS FAVORÁVEIS
CP = CASOS POSSÍVEIS
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Vamos calcular uma a uma .
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
P(N=1) Isso significa que a face 6 saiu no primeiro lançamento.
P = 1/6
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
P(N=2) Isso significa que a face 6 saiu no segundo lançamento.
P = (5/6) × 1/6
P =5/36
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Como falado acima , ''OU'' significa soma , então vamos somar as probabilidades de saírem na 1º ou 2º jogada .
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
1/6 + 5/36 = N
Tirando o MMC dos denominadores = 36
6 + 5 = 36N
11 = 36N
11/36 = N
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
A probabilidade é 11/36
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃