João projetou uma casa em formato retangular cujo o comprimento e a largura são, respectivamente, 15 metros e 7 metros, tal como a figura abaixo. Sabendo-se que os comprimentos a,b e c medem respectivamente, 1/3, 2/15 e 4/15 do comprimento da casa. Qual a fração que o comprimento d da garagem ocupa em relação ao comprimento da casa?
Anexos:
Soluções para a tarefa
Respondido por
0
Cintita,
Vamos passo a passo
Comprimento da casa = C
C = a + b + c + d
a = (1/3)C
b = (2/15)C
c = (4/15)C
d = (x/y)C
Então
(1/3)C + (2/15)C + (4/15)C + (x/y)C = C
1/3 + 2/15 + 4/15 + x/y = 1
(5 + 2 + 4 + 15x/y)/15 = 1 [15 = mmc(3,15)]
11 + 15x/y = 15
15x/y = 15 - 11
= 4
x/y = 4/15
OCUPA OS 4/15
Vamos passo a passo
Comprimento da casa = C
C = a + b + c + d
a = (1/3)C
b = (2/15)C
c = (4/15)C
d = (x/y)C
Então
(1/3)C + (2/15)C + (4/15)C + (x/y)C = C
1/3 + 2/15 + 4/15 + x/y = 1
(5 + 2 + 4 + 15x/y)/15 = 1 [15 = mmc(3,15)]
11 + 15x/y = 15
15x/y = 15 - 11
= 4
x/y = 4/15
OCUPA OS 4/15
Respondido por
0
Vamos lá.
Veja, Cintitamat, que: se o comprimento da casa é de 15metros e os comprimentos "a", "b" e "c" medem, respectivamente: 1/3, 2/15 e 4/15 do comprimento da casa, pede-se a fração que o comprimento "d" da garagem ocupa em relação ao comprimento da casa.
Veja: primeiro vamos somar as frações de "a", "b" e "c". Assim:
a + b + c = 1/3 + 2/15 + 4/15 ------ mmc = 15. Assim, utilizando-o, teremos:
a + b + c = (5*1 + 1*2 + 1*4)/15
a + b + c = (5 + 2 + 4)/15
a + b + c = (11)/15 --- ou apenas:
a + b + c = 11/15 .
Agora note: falta apenas a fração correspondente à garagem "d" em relação ao comprimento.
Como o total de todo o comprimento será dado por 15/15, então basta que façamos a subtração de "11/15" dos "15/15" e teremos a fração que o comprimento "d" da garagem ocupa em relação ao comprimento da casa. Assim:
d = 15/15 - 11/15 ---- ou, o que é a mesma coisa:
d = (15-11)/15
d = (4)/15 --- ou apenas:
d = 4/15 <--- Esta é a resposta.
É isso aí.
Deu pra entender bem?
OK?
Adjemir.
Veja, Cintitamat, que: se o comprimento da casa é de 15metros e os comprimentos "a", "b" e "c" medem, respectivamente: 1/3, 2/15 e 4/15 do comprimento da casa, pede-se a fração que o comprimento "d" da garagem ocupa em relação ao comprimento da casa.
Veja: primeiro vamos somar as frações de "a", "b" e "c". Assim:
a + b + c = 1/3 + 2/15 + 4/15 ------ mmc = 15. Assim, utilizando-o, teremos:
a + b + c = (5*1 + 1*2 + 1*4)/15
a + b + c = (5 + 2 + 4)/15
a + b + c = (11)/15 --- ou apenas:
a + b + c = 11/15 .
Agora note: falta apenas a fração correspondente à garagem "d" em relação ao comprimento.
Como o total de todo o comprimento será dado por 15/15, então basta que façamos a subtração de "11/15" dos "15/15" e teremos a fração que o comprimento "d" da garagem ocupa em relação ao comprimento da casa. Assim:
d = 15/15 - 11/15 ---- ou, o que é a mesma coisa:
d = (15-11)/15
d = (4)/15 --- ou apenas:
d = 4/15 <--- Esta é a resposta.
É isso aí.
Deu pra entender bem?
OK?
Adjemir.
Perguntas interessantes
Português,
9 meses atrás
Matemática,
9 meses atrás
Matemática,
1 ano atrás
Português,
1 ano atrás
Português,
1 ano atrás
Português,
1 ano atrás