Já é consenso que tanto a genética dos progenitores quanto a escolha dos alimentos que compõem o cardápio do lar são dois fatores que influenciam o peso da criança ao longo da vida. No entanto, outro agente também pode estar relacionado a isso. É o que sustenta uma nova pesquisa da Universidade de Liverpool (Reino Unido) e da Universidade Estadual da Flórida (EUA). Diante desse contexto, verificou-se em uma escola que o peso médio dos alunos é 57,45 Kg, com desvio-padrão de 6,12 Kg, normalmente distribuído. Se são 850 os alunos desta escola, quantos têm peso inferior a 50 Kg? A)200 B)300 C)95 D)150 E)100
Soluções para a tarefa
O exercício fala que os pesos dos alunos estão normalmente distribuídos , logo se trata de um exercício sobre Distribuição normal .
O gráfico da distribuição normal tem as seguintes características:
- Forma de "sino"
- Simétrico em relação a média (z=0)
- A Área total é igual a 1 ( 100%)
- A esquerda de z=0 a área será de 0,5
- A direita de z=0 a área será de 0,5
A tabela nos dá a área da curva ( probabilidade) entre z e 0( a direita de z)
Para responder a questão devemos achar z primeiro .
Como se acha z?
o nosso z será dado por :
Onde :
substituindo os dados em 1
Ao usar a Tabela ,vemos que para z= -1,21 a probabilidade é 0,3869 ( Como o gráfico é simétrico esse valor vale tanto para 1,21 e -1,21)
Porém não é essa a probabilidade pedida pois,o exercício pede a área para valores menores que z ou seja , a esquerda de z .
Faremos o seguinte :
- subtraímos toda a área a esquerda de z=0 ( que será 0,5) desse resultado achado na tabela , o que nos dá :
A probabilidade pedida é :
Agora basta achar 11,31% de 850
Ou aproximadamente 95 alunos , alternativa c)
Espero ter ajudado!!!!?