ITA-87 Seja S a coleção de todos os números complexos z, que são raízes da equação |z| - z = 1 + 2i, onde i é a unidade imaginária. Então podemos garantir que:
gabarito: S = {3/2 - 2i}
Soluções para a tarefa
Respondido por
2
Seja
. Na forma algébrica, ![\mathsf{z \ = \ a \ + \ b \ \cdot \ i.} \mathsf{z \ = \ a \ + \ b \ \cdot \ i.}](https://tex.z-dn.net/?f=%5Cmathsf%7Bz+%5C+%3D+%5C+a+%5C+%2B+%5C+b+%5C+%5Ccdot+%5C+i.%7D)
O módulo deste número complexo é a distância à origem do plano de Argand-Gauss:![\mathsf{|z| \ = \ \sqrt{a^2 \ + \ b^2}} \mathsf{|z| \ = \ \sqrt{a^2 \ + \ b^2}}](https://tex.z-dn.net/?f=%5Cmathsf%7B%7Cz%7C+%5C+%3D+%5C+%5Csqrt%7Ba%5E2+%5C+%2B+%5C+b%5E2%7D%7D)
![\mathsf{|z| \ - \ z \ = \ 1 \ + \ 2 \ \cdot \ i \ \rightarrow} \\
\\\
\\
\mathsf{\sqrt{a^2 \ + \ b^2} \ - \ a \ - \ b \ \cdot \ i \ = \ 1 \ + \ 2 \ \cdot \ i \ \rightarrow} \mathsf{|z| \ - \ z \ = \ 1 \ + \ 2 \ \cdot \ i \ \rightarrow} \\
\\\
\\
\mathsf{\sqrt{a^2 \ + \ b^2} \ - \ a \ - \ b \ \cdot \ i \ = \ 1 \ + \ 2 \ \cdot \ i \ \rightarrow}](https://tex.z-dn.net/?f=%5Cmathsf%7B%7Cz%7C+%5C+-+%5C+z+%5C+%3D+%5C+1+%5C+%2B+%5C+2+%5C+%5Ccdot+%5C+i+%5C+%5Crightarrow%7D+%5C%5C%0A%5C%5C%5C%0A%5C%5C%0A%5Cmathsf%7B%5Csqrt%7Ba%5E2+%5C+%2B+%5C+b%5E2%7D+%5C+-+%5C+a+%5C+-+%5C+b+%5C+%5Ccdot+%5C+i+%5C+%3D+%5C+1+%5C+%2B+%5C+2+%5C+%5Ccdot+%5C+i+%5C+%5Crightarrow%7D)
Igualaremos as partes puramente imaginárias e as puramente reais:
![\mathsf{- b \ \cdot \ i \ = \ 2 \ \cdot \ i \ \rightarrow} \\
\\
\\
\boxed{\mathsf{b \ = \ - 2}} \mathsf{- b \ \cdot \ i \ = \ 2 \ \cdot \ i \ \rightarrow} \\
\\
\\
\boxed{\mathsf{b \ = \ - 2}}](https://tex.z-dn.net/?f=%5Cmathsf%7B-+b+%5C+%5Ccdot+%5C+i+%5C+%3D+%5C+2+%5C+%5Ccdot+%5C+i+%5C+%5Crightarrow%7D+%5C%5C%0A%5C%5C%0A%5C%5C%0A%5Cboxed%7B%5Cmathsf%7Bb+%5C+%3D+%5C+-+2%7D%7D)
![\mathsf{\sqrt{a^2 \ + \ \underbrace{\mathsf{4}}_{b^2}} - \ a \ = \ 1 \ \rightarrow} \\
\\
\\
\mathsf{\sqrt{a^2 \ + \ 4} \ = \ 1 \ + \ a \ \rightarrow} \\
\\
\\
\mathsf{a^2 \ + \ 4 \ = \ (1 \ + \ a)^2 \ \rightarrow} \\
\\
\\
\mathsf{a^2 \ + \ 4 \ = \ 1 \ + \ 2 \ \cdot \ a \ + \ a^2 \ \rightarrow} \\
\\
\\
\mathsf{3 \ = \ 2 \ \cdot \ a \ \rightarrow} \\
\\
\\
\boxed{\mathsf{a \ = \ \dfrac{3}{2}}} \mathsf{\sqrt{a^2 \ + \ \underbrace{\mathsf{4}}_{b^2}} - \ a \ = \ 1 \ \rightarrow} \\
\\
\\
\mathsf{\sqrt{a^2 \ + \ 4} \ = \ 1 \ + \ a \ \rightarrow} \\
\\
\\
\mathsf{a^2 \ + \ 4 \ = \ (1 \ + \ a)^2 \ \rightarrow} \\
\\
\\
\mathsf{a^2 \ + \ 4 \ = \ 1 \ + \ 2 \ \cdot \ a \ + \ a^2 \ \rightarrow} \\
\\
\\
\mathsf{3 \ = \ 2 \ \cdot \ a \ \rightarrow} \\
\\
\\
\boxed{\mathsf{a \ = \ \dfrac{3}{2}}}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Csqrt%7Ba%5E2+%5C+%2B+%5C+%5Cunderbrace%7B%5Cmathsf%7B4%7D%7D_%7Bb%5E2%7D%7D+-+%5C+a+%5C+%3D+%5C+1+%5C+%5Crightarrow%7D+%5C%5C%0A%5C%5C%0A%5C%5C%0A%5Cmathsf%7B%5Csqrt%7Ba%5E2+%5C+%2B+%5C+4%7D+%5C+%3D+%5C+1+%5C+%2B+%5C+a+%5C+%5Crightarrow%7D+%5C%5C%0A%5C%5C%0A%5C%5C%0A%5Cmathsf%7Ba%5E2+%5C+%2B+%5C+4+%5C+%3D+%5C+%281+%5C+%2B+%5C+a%29%5E2+%5C+%5Crightarrow%7D+%5C%5C%0A%5C%5C%0A%5C%5C%0A%5Cmathsf%7Ba%5E2+%5C+%2B+%5C+4+%5C+%3D+%5C+1+%5C+%2B+%5C+2+%5C+%5Ccdot+%5C+a+%5C+%2B+%5C+a%5E2+%5C+%5Crightarrow%7D+%5C%5C%0A%5C%5C%0A%5C%5C%0A%5Cmathsf%7B3+%5C+%3D+%5C+2+%5C+%5Ccdot+%5C+a+%5C+%5Crightarrow%7D+%5C%5C%0A%5C%5C%0A%5C%5C%0A%5Cboxed%7B%5Cmathsf%7Ba+%5C+%3D+%5C+%5Cdfrac%7B3%7D%7B2%7D%7D%7D)
Logo,![\mathsf{z \ = \ \dfrac{3}{2} \ - \ 2 \ \cdot \ i} \mathsf{z \ = \ \dfrac{3}{2} \ - \ 2 \ \cdot \ i}](https://tex.z-dn.net/?f=%5Cmathsf%7Bz+%5C+%3D+%5C+%5Cdfrac%7B3%7D%7B2%7D+%5C+-+%5C+2+%5C+%5Ccdot+%5C+i%7D+)
O módulo deste número complexo é a distância à origem do plano de Argand-Gauss:
Igualaremos as partes puramente imaginárias e as puramente reais:
Logo,
caiooliveira03p2z3x2:
Caramba, muito obrigado!
Perguntas interessantes