(Ita 2007) Assinale a opção que indica o módulo do número complexo 1/(1 + i cotg x), x ≠ kπ, k ∈ .
Soluções para a tarefa
Respondido por
18
Só faltou dizer que
.
Seja
.
é o seu conjugado.
Além disso,
é o módulo desse número complexo (distância à origem do plano de Argand-Gauss).
Seja
o número complexo.
Vamos racionalizar
(pois
) multiplicando numerador e denominador pelo conjugado do denominador :
![\mathsf{z \ = \ z \ \cdot \ \underbrace{\dfrac{\mathsf{1 \ - \ i \cdot cotg(x)}}{\mathsf{1 \ - \ i \cdot cotg(x)}}}_{conjugado \ do \ denominador}} \ \rightarrow \\ \\ \\ \mathsf{z \ = \ \dfrac{1}{1 \ + \ i \cdot cotg(x)} \ \cdot \ \dfrac{\mathsf{1 \ - \ i \cdot cotg(x)}}{\mathsf{1 \ - \ i \cdot cotg(x)}}} \ \rightarrow \\ \\ \\ \mathsf{z \ = \ \dfrac{1 \ - \ i \cdot cotg(x)}{\underbrace{\mathsf{1^2 \ - \ i^2 \cdot cotg^2(x)}}_{produto \ not\'avel}}} \ \rightarrow \mathsf{z \ = \ z \ \cdot \ \underbrace{\dfrac{\mathsf{1 \ - \ i \cdot cotg(x)}}{\mathsf{1 \ - \ i \cdot cotg(x)}}}_{conjugado \ do \ denominador}} \ \rightarrow \\ \\ \\ \mathsf{z \ = \ \dfrac{1}{1 \ + \ i \cdot cotg(x)} \ \cdot \ \dfrac{\mathsf{1 \ - \ i \cdot cotg(x)}}{\mathsf{1 \ - \ i \cdot cotg(x)}}} \ \rightarrow \\ \\ \\ \mathsf{z \ = \ \dfrac{1 \ - \ i \cdot cotg(x)}{\underbrace{\mathsf{1^2 \ - \ i^2 \cdot cotg^2(x)}}_{produto \ not\'avel}}} \ \rightarrow](https://tex.z-dn.net/?f=%5Cmathsf%7Bz+%5C+%3D+%5C+z+%5C+%5Ccdot+%5C+%5Cunderbrace%7B%5Cdfrac%7B%5Cmathsf%7B1+%5C+-+%5C+i+%5Ccdot+cotg%28x%29%7D%7D%7B%5Cmathsf%7B1+%5C+-+%5C+i+%5Ccdot+cotg%28x%29%7D%7D%7D_%7Bconjugado+%5C+do+%5C+denominador%7D%7D+%5C+%5Crightarrow+%5C%5C+%5C%5C+%5C%5C+%5Cmathsf%7Bz+%5C+%3D+%5C+%5Cdfrac%7B1%7D%7B1+%5C+%2B+%5C+i+%5Ccdot+cotg%28x%29%7D+%5C+%5Ccdot+%5C+%5Cdfrac%7B%5Cmathsf%7B1+%5C+-+%5C+i+%5Ccdot+cotg%28x%29%7D%7D%7B%5Cmathsf%7B1+%5C+-+%5C+i+%5Ccdot+cotg%28x%29%7D%7D%7D+%5C+%5Crightarrow+%5C%5C+%5C%5C+%5C%5C+%5Cmathsf%7Bz+%5C+%3D+%5C+%5Cdfrac%7B1+%5C+-+%5C+i+%5Ccdot+cotg%28x%29%7D%7B%5Cunderbrace%7B%5Cmathsf%7B1%5E2+%5C+-+%5C+i%5E2+%5Ccdot+cotg%5E2%28x%29%7D%7D_%7Bproduto+%5C+not%5C%27avel%7D%7D%7D+%5C+%5Crightarrow)
![\mathsf{z \ = \ \dfrac{1 \ - \ i \cdot cotg(x)}{1 \ + \ cotg^2(x)}} \mathsf{z \ = \ \dfrac{1 \ - \ i \cdot cotg(x)}{1 \ + \ cotg^2(x)}}](https://tex.z-dn.net/?f=%5Cmathsf%7Bz+%5C+%3D+%5C+%5Cdfrac%7B1+%5C+-+%5C+i+%5Ccdot+cotg%28x%29%7D%7B1+%5C+%2B+%5C+cotg%5E2%28x%29%7D%7D)
Sendo![\mathsf{cotg(x) \ = \ tg^{-1}(x) \ = \ \dfrac{cos(x)}{sen(x)}} \ : \mathsf{cotg(x) \ = \ tg^{-1}(x) \ = \ \dfrac{cos(x)}{sen(x)}} \ :](https://tex.z-dn.net/?f=%5Cmathsf%7Bcotg%28x%29+%5C+%3D+%5C+tg%5E%7B-1%7D%28x%29+%5C+%3D+%5C+%5Cdfrac%7Bcos%28x%29%7D%7Bsen%28x%29%7D%7D+%5C+%3A)
![\mathsf{z \ = \ \dfrac{1 \ - \ i \cdot \Big(\frac{cos(x)}{sen(x)}\Big)}{1 \ + \ \Big(\frac{cos(x)}{sen(x)}\Big)^2}} \ \rightarrow \\
\\
\\
\mathsf{z \ = \ \dfrac{\frac{sen(x) \ + \ i \cdot cos(x)}{sen(x)}}{\frac{sen^2(x) \ + \ cos^2(x)}{sen^2(x)}}} \ \rightarrow \ \mathsf{sen^2(x) \ + \ cos^2(x) \ = \ 1} \ : \\
\\
\\
\mathsf{z \ = \ \dfrac{\frac{sen(x) \ + \ i \cdot cos(x)}{sen(x)}}{\frac{1}{sen^2(x)}}}} \ \rightarrow \\ \mathsf{z \ = \ \dfrac{1 \ - \ i \cdot \Big(\frac{cos(x)}{sen(x)}\Big)}{1 \ + \ \Big(\frac{cos(x)}{sen(x)}\Big)^2}} \ \rightarrow \\
\\
\\
\mathsf{z \ = \ \dfrac{\frac{sen(x) \ + \ i \cdot cos(x)}{sen(x)}}{\frac{sen^2(x) \ + \ cos^2(x)}{sen^2(x)}}} \ \rightarrow \ \mathsf{sen^2(x) \ + \ cos^2(x) \ = \ 1} \ : \\
\\
\\
\mathsf{z \ = \ \dfrac{\frac{sen(x) \ + \ i \cdot cos(x)}{sen(x)}}{\frac{1}{sen^2(x)}}}} \ \rightarrow \\](https://tex.z-dn.net/?f=%5Cmathsf%7Bz+%5C+%3D+%5C+%5Cdfrac%7B1+%5C+-+%5C+i+%5Ccdot+%5CBig%28%5Cfrac%7Bcos%28x%29%7D%7Bsen%28x%29%7D%5CBig%29%7D%7B1+%5C+%2B+%5C+%5CBig%28%5Cfrac%7Bcos%28x%29%7D%7Bsen%28x%29%7D%5CBig%29%5E2%7D%7D+%5C+%5Crightarrow+%5C%5C%0A%5C%5C%0A%5C%5C%0A%5Cmathsf%7Bz+%5C+%3D+%5C+%5Cdfrac%7B%5Cfrac%7Bsen%28x%29+%5C+%2B+%5C+i+%5Ccdot+cos%28x%29%7D%7Bsen%28x%29%7D%7D%7B%5Cfrac%7Bsen%5E2%28x%29+%5C+%2B+%5C+cos%5E2%28x%29%7D%7Bsen%5E2%28x%29%7D%7D%7D+%5C+%5Crightarrow+%5C+%5Cmathsf%7Bsen%5E2%28x%29+%5C+%2B+%5C+cos%5E2%28x%29+%5C+%3D+%5C+1%7D+%5C+%3A+%5C%5C%0A%5C%5C%0A%5C%5C%0A%5Cmathsf%7Bz+%5C+%3D+%5C+%5Cdfrac%7B%5Cfrac%7Bsen%28x%29+%5C+%2B+%5C+i+%5Ccdot+cos%28x%29%7D%7Bsen%28x%29%7D%7D%7B%5Cfrac%7B1%7D%7Bsen%5E2%28x%29%7D%7D%7D%7D+%5C+%5Crightarrow+%5C%5C)
![\mathsf{z \ = \ \dfrac{(sen(x) \ + \ i \cdot cos(x)) \ \cdot \ sen^{\not2}(x)}{\not sen(x)}} \ \rightarrow \\
\\
\\
\boxed{\mathsf{z \ = \ sen^2(x) \ + \ i \cdot sen(x) \cdot cos(x)}} \mathsf{z \ = \ \dfrac{(sen(x) \ + \ i \cdot cos(x)) \ \cdot \ sen^{\not2}(x)}{\not sen(x)}} \ \rightarrow \\
\\
\\
\boxed{\mathsf{z \ = \ sen^2(x) \ + \ i \cdot sen(x) \cdot cos(x)}}](https://tex.z-dn.net/?f=%5Cmathsf%7Bz+%5C+%3D+%5C+%5Cdfrac%7B%28sen%28x%29+%5C+%2B+%5C+i+%5Ccdot+cos%28x%29%29+%5C+%5Ccdot+%5C+sen%5E%7B%5Cnot2%7D%28x%29%7D%7B%5Cnot+sen%28x%29%7D%7D+%5C+%5Crightarrow+%5C%5C%0A%5C%5C%0A%5C%5C%0A%5Cboxed%7B%5Cmathsf%7Bz+%5C+%3D+%5C+sen%5E2%28x%29+%5C+%2B+%5C+i+%5Ccdot+sen%28x%29+%5Ccdot+cos%28x%29%7D%7D)
Podemos tirar que :
![\mathsf{\circ \ a \ = \ sen^2(x)}; \\
\\
\mathsf{\bullet \ b \ = \ sen(x) \ \cdot \ cos(x).} \mathsf{\circ \ a \ = \ sen^2(x)}; \\
\\
\mathsf{\bullet \ b \ = \ sen(x) \ \cdot \ cos(x).}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Ccirc+%5C+a+%5C+%3D+%5C+sen%5E2%28x%29%7D%3B+%5C%5C%0A%5C%5C%0A%5Cmathsf%7B%5Cbullet+%5C+b++%5C+%3D+%5C+sen%28x%29+%5C+%5Ccdot+%5C+cos%28x%29.%7D)
O módulo
é ![\mathsf{\rightsquigarrow} \mathsf{\rightsquigarrow}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Crightsquigarrow%7D)
![\mathsf{|z| \ = \ \sqrt{(sen^2(x))^2 \ + (sen(x) \cdot cos(x))^2}} \ \rightarrow \\
\\
\\
\mathsf{|z| \ = \ \sqrt{sen^4(x) \ + \ sen^2(x) \cdot cos^2(x)}} \ \rightarrow \\
\\
\\
\mathsf{|z| \ = \ \sqrt{sen^2(x) \cdot (\underbrace{\mathsf{sen^2(x) \ + \
cos^2(x)}}_{1})}} \ \rightarrow \\
\\
\\
\mathsf{|z| \ = \ \sqrt{sen^2(x)}} \ \rightarrow \\
\\
\\
\boxed{\boxed{\mathsf{|z| \ = \ |sen(x)||}}} \ \Longrightarrow \mathsf{|z| \ = \ \sqrt{(sen^2(x))^2 \ + (sen(x) \cdot cos(x))^2}} \ \rightarrow \\
\\
\\
\mathsf{|z| \ = \ \sqrt{sen^4(x) \ + \ sen^2(x) \cdot cos^2(x)}} \ \rightarrow \\
\\
\\
\mathsf{|z| \ = \ \sqrt{sen^2(x) \cdot (\underbrace{\mathsf{sen^2(x) \ + \
cos^2(x)}}_{1})}} \ \rightarrow \\
\\
\\
\mathsf{|z| \ = \ \sqrt{sen^2(x)}} \ \rightarrow \\
\\
\\
\boxed{\boxed{\mathsf{|z| \ = \ |sen(x)||}}} \ \Longrightarrow](https://tex.z-dn.net/?f=%5Cmathsf%7B%7Cz%7C+%5C+%3D+%5C+%5Csqrt%7B%28sen%5E2%28x%29%29%5E2+%5C+%2B+%28sen%28x%29+%5Ccdot+cos%28x%29%29%5E2%7D%7D+%5C+%5Crightarrow+%5C%5C%0A%5C%5C%0A%5C%5C%0A%5Cmathsf%7B%7Cz%7C+%5C+%3D+%5C+%5Csqrt%7Bsen%5E4%28x%29+%5C+%2B+%5C+sen%5E2%28x%29+%5Ccdot+cos%5E2%28x%29%7D%7D+%5C+%5Crightarrow+%5C%5C%0A%5C%5C%0A%5C%5C%0A%5Cmathsf%7B%7Cz%7C+%5C+%3D+%5C+%5Csqrt%7Bsen%5E2%28x%29+%5Ccdot+%28%5Cunderbrace%7B%5Cmathsf%7Bsen%5E2%28x%29+%5C+%2B+%5C+%0A+cos%5E2%28x%29%7D%7D_%7B1%7D%29%7D%7D+%5C+%5Crightarrow+%5C%5C%0A%5C%5C%0A%5C%5C%0A%5Cmathsf%7B%7Cz%7C+%5C+%3D+%5C+%5Csqrt%7Bsen%5E2%28x%29%7D%7D+%5C+%5Crightarrow+%5C%5C%0A%5C%5C%0A%5C%5C%0A%5Cboxed%7B%5Cboxed%7B%5Cmathsf%7B%7Cz%7C+%5C+%3D+%5C+%7Csen%28x%29%7C%7C%7D%7D%7D+%5C+%5CLongrightarrow)
Módulo de
!
Seja
Além disso,
Seja
Vamos racionalizar
Sendo
Podemos tirar que :
O módulo
Módulo de
NatalyaMoraisJn:
Mais uma vez ❤, mostrando os seus dons❤, nas exatas❤, querido *MEU*❣ Meus Parabéns❣, como você é o *MEU* genial❣❤❤
Respondido por
1
Resposta:
Outra solução
Explicação passo a passo:
podemos escrever como ------>´´módulo``=
Perguntas interessantes
Ed. Física,
11 meses atrás
Física,
11 meses atrás
Biologia,
1 ano atrás
Matemática,
1 ano atrás
Física,
1 ano atrás
Matemática,
1 ano atrás