interpole 15 meios aritméticos entre14 e 1116?
Soluções para a tarefa
Respondido por
1
Encontrar a razão da PA
an = a1 + ( n -1) . r
1116 = 14 + ( 17 -1) . r
1116 = 14 + 16r
1102 = 16r
r = 1102/16
r = 551 / 8
r = 68,875
===
an = a1 + ( n -1) . r = an
a1 = 14 + ( 1 -1) .68,875 = 14
a2 = 14 + ( 2 -1) .68,875 = 83
an = 14 + ( 3 -1) .68,875 = 152
an = 14 + ( 4 -1) .68,875 = 221
an = 14 + ( 5 -1) .68,875 = 290
an = 14 + ( 6 -1) .68,875 = 358
an = 14 + ( 7 -1) .68,875 = 427
an = 14 + ( 8 -1) .68,88 = 496
an = 14 + ( 9 -1) .68,875 = 565
an = 14 + ( 10 -1) .68,875 = 634
an = 14 + ( 11 -1) .68,875 = 703
an = 14 + ( 12 -1) .68,875 = 772
an = 14 + ( 13 -1) .68,875 = 841
an = 14 + ( 14 -1) .68,875 = 978
an = 14 + ( 15 -1) .68,875 = 909
an = 14 + ( 16 -1) .68,875 = 1047
an = 14 + ( 17 -1) .68,875 = 1116
PA = (14, 83, 152, 221, 290, 358, 427, 496, 565, 634, 703, 772 ,841, 909, 978, 1047,1116)
an = a1 + ( n -1) . r
1116 = 14 + ( 17 -1) . r
1116 = 14 + 16r
1102 = 16r
r = 1102/16
r = 551 / 8
r = 68,875
===
an = a1 + ( n -1) . r = an
a1 = 14 + ( 1 -1) .68,875 = 14
a2 = 14 + ( 2 -1) .68,875 = 83
an = 14 + ( 3 -1) .68,875 = 152
an = 14 + ( 4 -1) .68,875 = 221
an = 14 + ( 5 -1) .68,875 = 290
an = 14 + ( 6 -1) .68,875 = 358
an = 14 + ( 7 -1) .68,875 = 427
an = 14 + ( 8 -1) .68,88 = 496
an = 14 + ( 9 -1) .68,875 = 565
an = 14 + ( 10 -1) .68,875 = 634
an = 14 + ( 11 -1) .68,875 = 703
an = 14 + ( 12 -1) .68,875 = 772
an = 14 + ( 13 -1) .68,875 = 841
an = 14 + ( 14 -1) .68,875 = 978
an = 14 + ( 15 -1) .68,875 = 909
an = 14 + ( 16 -1) .68,875 = 1047
an = 14 + ( 17 -1) .68,875 = 1116
PA = (14, 83, 152, 221, 290, 358, 427, 496, 565, 634, 703, 772 ,841, 909, 978, 1047,1116)
Helvio:
De nada.
Perguntas interessantes
Ed. Física,
9 meses atrás
Matemática,
9 meses atrás
Ed. Física,
1 ano atrás
Matemática,
1 ano atrás
Biologia,
1 ano atrás
Geografia,
1 ano atrás