interpole 13 meios aritimeticos entre 3 e 227
Soluções para a tarefa
Respondido por
1
Encontrar a razão da PA
an = a1 + ( n -1) . r
227 = 3 + ( 15 -1) . r
227 = 3 + 14r
224 = 14r
r = 224 / 14
r = 16
====
an = a1 + ( n -1) . r = an
a1 = 3 + ( 1 -1) .16 = 3
a2 = 3 + ( 2 -1) .16 = 19
a3 = 3 + ( 3 -1) .16 = 35
a4 = 3 + ( 4 -1) .16 = 51
a5 = 3 + ( 5 -1) .16 = 67
a6 = 3 + ( 6 -1) .16 = 83
a7 = 3 + ( 7 -1) .16 = 99
a8 = 3 + ( 8 -1) .16 = 115
a9 = 3 + ( 9 -1) .16 = 131
a10 = 3 + ( 10 -1) .16 = 147
a11 = 3 + ( 11 -1) .16 = 163
a12 = 3 + ( 12 -1) .16 = 179
a13 = 3 + ( 13 -1) .16 = 195
a14 = 3 + ( 14 -1) .16 = 211
a15 = 3 + ( 15 -1) .16 = 227
PA = (3, 19, 35, 51, 67, 83, 99, 115, 131, 147, 163, 179, 195, 211, 227 )
an = a1 + ( n -1) . r
227 = 3 + ( 15 -1) . r
227 = 3 + 14r
224 = 14r
r = 224 / 14
r = 16
====
an = a1 + ( n -1) . r = an
a1 = 3 + ( 1 -1) .16 = 3
a2 = 3 + ( 2 -1) .16 = 19
a3 = 3 + ( 3 -1) .16 = 35
a4 = 3 + ( 4 -1) .16 = 51
a5 = 3 + ( 5 -1) .16 = 67
a6 = 3 + ( 6 -1) .16 = 83
a7 = 3 + ( 7 -1) .16 = 99
a8 = 3 + ( 8 -1) .16 = 115
a9 = 3 + ( 9 -1) .16 = 131
a10 = 3 + ( 10 -1) .16 = 147
a11 = 3 + ( 11 -1) .16 = 163
a12 = 3 + ( 12 -1) .16 = 179
a13 = 3 + ( 13 -1) .16 = 195
a14 = 3 + ( 14 -1) .16 = 211
a15 = 3 + ( 15 -1) .16 = 227
PA = (3, 19, 35, 51, 67, 83, 99, 115, 131, 147, 163, 179, 195, 211, 227 )
Perguntas interessantes