interpolando 10 meios aritméticos entre 5 e 49 qual o valor do termo a7
Soluções para a tarefa
Respondido por
0
Queremos interpolar
meios aritméticos entre os dois extremos
e
, onde
é o número de termos da progressão aritmética obtida. Assim
![n=10\text{ meios}+2\text{ extremos}\\ \\ n=12 \text{ termos} n=10\text{ meios}+2\text{ extremos}\\ \\ n=12 \text{ termos}](https://tex.z-dn.net/?f=n%3D10%5Ctext%7B+meios%7D%2B2%5Ctext%7B+extremos%7D%5C%5C+%5C%5C+n%3D12+%5Ctext%7B+termos%7D)
A razão
da P.A. é
![r=\dfrac{a_{n}-a_{1}}{n-1 \right }\\ \\ \\ r=\dfrac{a_{12}-a_{1}}{12-1}\\ \\ r=\dfrac{49-5}{11}\\ \\ r=\dfrac{44}{11}\\ \\ r=4 r=\dfrac{a_{n}-a_{1}}{n-1 \right }\\ \\ \\ r=\dfrac{a_{12}-a_{1}}{12-1}\\ \\ r=\dfrac{49-5}{11}\\ \\ r=\dfrac{44}{11}\\ \\ r=4](https://tex.z-dn.net/?f=r%3D%5Cdfrac%7Ba_%7Bn%7D-a_%7B1%7D%7D%7Bn-1+%5Cright+%7D%5C%5C+%5C%5C+%5C%5C+r%3D%5Cdfrac%7Ba_%7B12%7D-a_%7B1%7D%7D%7B12-1%7D%5C%5C+%5C%5C+r%3D%5Cdfrac%7B49-5%7D%7B11%7D%5C%5C+%5C%5C+r%3D%5Cdfrac%7B44%7D%7B11%7D%5C%5C+%5C%5C+r%3D4)
Como queremos saber o sétimo termo desta P.A., então fazemos
na fórmula do termo geral da P.A.:
![a_{n}=a_{1}+\left(n-1 \right ) \cdot r\\ \\ a_{7}=a_{1}+\left(7-1 \right ) \cdot r\\ \\ a_{7}=5+6\cdot \left(4 \right )\\ \\ a_{7}=5+24\\ \\ \boxed{a_{7}=29} a_{n}=a_{1}+\left(n-1 \right ) \cdot r\\ \\ a_{7}=a_{1}+\left(7-1 \right ) \cdot r\\ \\ a_{7}=5+6\cdot \left(4 \right )\\ \\ a_{7}=5+24\\ \\ \boxed{a_{7}=29}](https://tex.z-dn.net/?f=a_%7Bn%7D%3Da_%7B1%7D%2B%5Cleft%28n-1+%5Cright+%29+%5Ccdot+r%5C%5C+%5C%5C+a_%7B7%7D%3Da_%7B1%7D%2B%5Cleft%287-1+%5Cright+%29+%5Ccdot+r%5C%5C+%5C%5C+a_%7B7%7D%3D5%2B6%5Ccdot+%5Cleft%284+%5Cright+%29%5C%5C+%5C%5C+a_%7B7%7D%3D5%2B24%5C%5C+%5C%5C+%5Cboxed%7Ba_%7B7%7D%3D29%7D)
A sequência obtida é esta:
![\left(5,\,9,\,13,\,17,\,21,\,25,\,\right.\underbrace{29}_{a_{7}}\left.,\,33,\,37,\,41,\,45,\,49 \right ) \left(5,\,9,\,13,\,17,\,21,\,25,\,\right.\underbrace{29}_{a_{7}}\left.,\,33,\,37,\,41,\,45,\,49 \right )](https://tex.z-dn.net/?f=%5Cleft%285%2C%5C%2C9%2C%5C%2C13%2C%5C%2C17%2C%5C%2C21%2C%5C%2C25%2C%5C%2C%5Cright.%5Cunderbrace%7B29%7D_%7Ba_%7B7%7D%7D%5Cleft.%2C%5C%2C33%2C%5C%2C37%2C%5C%2C41%2C%5C%2C45%2C%5C%2C49+%5Cright+%29)
A razão
Como queremos saber o sétimo termo desta P.A., então fazemos
A sequência obtida é esta:
Perguntas interessantes