Matemática, perguntado por isabelascampo, 10 meses atrás

INTEGRAL

integral \: \csc(5t) \cos(10t)
de 0 até pi/2

Soluções para a tarefa

Respondido por CyberKirito
1

Caso tenha problemas para visualizar a resposta experimente abrir pelo navegador https://brainly.com.br/tarefa/33109559?answering=true&answeringSource=greatJob%2FquestionPage%2F1

=================================================================

\sf{cos(10t)=cos(2\cdot5t)=1-2sen^2(5t)}\\\displaystyle\sf{\int_{0}^{\frac{\pi}{2}}csc(5t)\cdot cos(10t)=\int_{0}^{\frac{\pi}{2}}}\dfrac{1-2sen^2(5t)}{sen(5t)~dt}\\\displaystyle\sf{\int_{0}^{\frac{\pi}{2}}csc(5t)~dt-2\int_{0}^{\frac{\pi}{2}}\dfrac{\diagdown\!\!\!\!\!\!sen^2(5t)}{\diagdown\!\!\!\!\!sen(5t)}~dt}}\\\displaystyle\sf{\dfrac{1}{5}\int_{0}^{\frac{\pi}{2}}5csc(5t)~dt-2\int_{0}^{\frac{\pi}{2}}sen(5t)~dt}

\displaystyle\sf{\dfrac{1}{5}\int_{0}^{\frac{\pi}{2}}5csc(5t)~dt}\not\exists}\\\sf{portanto~\int_{0}^{\frac{\pi}{2}}csc(5t)\cdot cos(10t)~dt\not\exists}

Perguntas interessantes