integral partes ∫ (x+3)^2 .e^x dx
Soluções para a tarefa
Respondido por
2
Olá Sabrina!

Note que devemos por partes mais uma vez (a última integral)!
Segue,
![\begin{cases} h(x) = x + 3 \rightarrow h'(x) = 1 dx \\ i'(x) = e^x dx \rightarrow i(x) = e^x \end{cases} \\\\\\ \int (x + 3)^2 \cdot e^x dx = (x + 3)^2 \cdot e^x - 2 \left [ h(x) \cdot i(x) - \int h'(x) \cdot i(x) dx \right ] \\\\\\ \int (x + 3)^2 \cdot e^x dx = (x + 3)^2 \cdot e^x - 2 \left [ (x + 3) \cdot e^x - \int 1 \cdot e^x dx \right ] \\\\\\ \int (x + 3)^2 \cdot e^x dx = (x + 3)^2 \cdot e^x - 2 (x + 3) \cdot e^x + 2 \cdot (e^x + c_1) \begin{cases} h(x) = x + 3 \rightarrow h'(x) = 1 dx \\ i'(x) = e^x dx \rightarrow i(x) = e^x \end{cases} \\\\\\ \int (x + 3)^2 \cdot e^x dx = (x + 3)^2 \cdot e^x - 2 \left [ h(x) \cdot i(x) - \int h'(x) \cdot i(x) dx \right ] \\\\\\ \int (x + 3)^2 \cdot e^x dx = (x + 3)^2 \cdot e^x - 2 \left [ (x + 3) \cdot e^x - \int 1 \cdot e^x dx \right ] \\\\\\ \int (x + 3)^2 \cdot e^x dx = (x + 3)^2 \cdot e^x - 2 (x + 3) \cdot e^x + 2 \cdot (e^x + c_1)](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D+h%28x%29+%3D+x+%2B+3+%5Crightarrow+h%27%28x%29+%3D+1+dx+%5C%5C+i%27%28x%29+%3D+e%5Ex+dx+%5Crightarrow+i%28x%29+%3D+e%5Ex+%5Cend%7Bcases%7D+%5C%5C%5C%5C%5C%5C+%5Cint+%28x+%2B+3%29%5E2+%5Ccdot+e%5Ex+dx+%3D+%28x+%2B+3%29%5E2+%5Ccdot+e%5Ex+-+2+%5Cleft+%5B+h%28x%29+%5Ccdot+i%28x%29+-+%5Cint+h%27%28x%29+%5Ccdot+i%28x%29+dx+%5Cright+%5D+%5C%5C%5C%5C%5C%5C+%5Cint+%28x+%2B+3%29%5E2+%5Ccdot+e%5Ex+dx+%3D+%28x+%2B+3%29%5E2+%5Ccdot+e%5Ex+-+2+%5Cleft+%5B+%28x+%2B+3%29+%5Ccdot+e%5Ex+-+%5Cint+1+%5Ccdot+e%5Ex+dx+%5Cright+%5D+%5C%5C%5C%5C%5C%5C+%5Cint+%28x+%2B+3%29%5E2+%5Ccdot+e%5Ex+dx+%3D+%28x+%2B+3%29%5E2+%5Ccdot+e%5Ex+-+2+%28x+%2B+3%29+%5Ccdot+e%5Ex+%2B+2+%5Ccdot+%28e%5Ex+%2B+c_1%29)
Note que devemos por partes mais uma vez (a última integral)!
Segue,
Perguntas interessantes
Matemática,
1 ano atrás
Física,
1 ano atrás
Biologia,
1 ano atrás
Saúde,
1 ano atrás
Matemática,
1 ano atrás