Matemática, perguntado por marcoafreitas23, 1 ano atrás

integral indefinida e^3x cos 4x dx

Soluções para a tarefa

Respondido por andresccp
10
\int e^{3x}*cos(4x) dx

integrando por partes

\int UdV = U*V - \int VdU\\\\U=cos(4x)\\dU=-4sen(4x)dx\\\\dV=e^{3x}dx\\V= \frac{e^{3x}}{3}\\\\ \boxed{\boxed{ \int e^{3x}cos(4x) dx =  \frac{e^{3x}}{3}cos(4x) +  \frac{4}{3} \int e^{3x}sen(4x)dx}} \to \text{ eqauacao 1}

resolvendo a outra integral que surgiu

\int e^{3x}sen(4x)dx\\\\ U=sen(4x)\\dU=4cos(4x)dx\\dV=e^{3x}\\V= \frac{e^{3x}}{3} \\\\ \boxed{\boxed{\int e^{3x}sen(4x)dx= \frac{e^{3x}}{3} sen(4x)- \frac{4}{3} \int e^{3x}cos(4x)dx}}

substituindo o valor da integral na equação 1

 \int e^{3x}cos(4x) dx = \frac{e^{3x}}{3}cos(4x) + \frac{4}{3}\left(\frac{e^{3x}}{3} sen(4x)- \frac{4}{3} \int e^{3x}cos(4x)dx\right)\\\\   \int e^{3x}cos(4x) dx = \frac{e^{3x}}{3}cos(4x) + \frac{4e^{3x}}{9} sen(4x)- \frac{16}{9} \int e^{3x}cos(4x)dx\\\\\  \int e^{3x}cos(4x) dx  + \frac{16}{9} \int e^{3x}cos(4x) dx  =  \frac{e^{3x}}{3}cos(4x) + \frac{4e^{3x}}{9} sen(4x)\\\\  \frac{25}{9} \int e^{3x}cos(4x) dx= \frac{3e^{3x}cos(4x)+4e^{3x}sen(4x)}{9}

\boxed{\boxed{ \int e^{3x}cos(4x) dx= \frac{e^{3x}}{25}*\left[3cos(4x)+4sen(4x)\right] }}
Perguntas interessantes