Matemática, perguntado por ppersson, 1 ano atrás

integral de e^-x sen(x) dx?
Por partes.

Soluções para a tarefa

Respondido por Lukyo
3
I=\displaystyle\int e^{-x}\,\mathrm{sen\,}x\,dx


Método de integração por partes:

\begin{array}{lcl} u=e^{-x}&\Rightarrow&du=-\,e^{-x}\,dx\\\\ dv=\mathrm{sen\,}x\,dx&\Leftarrow&v=-\cos x \end{array}\\\\\\\\ \displaystyle\int u\,dv=uv-\int v\,du\\\\\\ \int e^{-x}\,\mathrm{sen\,}x\,dx=-\,e^{-x}\cos x-\int (-\cos\,x)\cdot (-\,e^{-x})\,dx\\\\\\ I=-\,e^{-x}\cos x-\underbrace{\int e^{-x}\cos x\,dx}_{I_1}~~~~~~\mathbf{(i)}

___________

Calculando I_1:

I_1=\displaystyle\int e^{-x}\cos x\,dx


Método de integração por partes:

\begin{array}{lcl} u=e^{-x}&\Rightarrow&du=-\,e^{-x}\,dx\\\\ dv=\cos x\,dx&\Leftarrow&v=\mathrm{sen\,} x \end{array}\\\\\\\\ \displaystyle\int u\,dv=uv-\int v\,du\\\\\\ \int e^{-x}\cos x\,dx=e^{-x}\,\mathrm{sen\,}x-\int \mathrm{sen\,}x\cdot (-\,e^{-x})\,dx\\\\\\ \int e^{-x}\cos x\,dx=e^{-x}\,\mathrm{sen\,}x+\int e^{-x}\,\mathrm{sen\,}x\,dx\\\\\\ I_1=e^{-x}\,\mathrm{sen\,}x+I~~~~~~\mathbf{(ii)}

____________

Substituindo \mathbf{(ii)} em \mathbf{(i)}, temos

I=-\,e^{-x}\cos x-(e^{-x}\,\mathrm{sen\,}x+I)\\\\ I=-\,e^{-x}\cos x-\,e^{-x}\,\mathrm{sen\,}x-I\\\\ I+I=-\,e^{-x}\cos x-\,e^{-x}\,\mathrm{sen\,}x\\\\ 2I=-\,e^{-x}\cos x-\,e^{-x}\,\mathrm{sen\,}x\\\\ I=-\,\dfrac{1}{2}e^{-x}\cos x-\dfrac{1}{2}\,e^{-x}\,\mathrm{sen\,}x+C\\\\\\\\ \therefore~~\boxed{\begin{array}{c}\displaystyle\int e^{-x}\,\mathrm{sen\,}x\,dx=-\,\dfrac{1}{2}e^{-x}\cos x-\dfrac{1}{2}\,e^{-x}\,\mathrm{sen\,}x+C \end{array}}


Bons estudos! :-)


Lukyo: Caso tenha problemas para visualizar a resposta, experimente abrir pelo navegador: http://brainly.com.br/tarefa/6134137
Perguntas interessantes