Matemática, perguntado por abdoralvieira, 1 ano atrás

integral de a) ∫1 (x2+ x)dx
0

Anexos:

Soluções para a tarefa

Respondido por Lukyo
1

Calcular a integral definida:

     \mathsf{\displaystyle\int_0^1 (x^2+x)\,dx}\\\\\\ =\mathsf{\left(\dfrac{x^{2+1}}{2+1}+\dfrac{x^{1+1}}{1+1}\right)\bigg|_0^1}\\\\\\ =\mathsf{\left(\dfrac{x^3}{3}+\dfrac{x^2}{2}\right)\bigg|_0^1}\\\\\\ =\mathsf{\left(\dfrac{1^3}{3}+\dfrac{1^2}{2}\right)-\left(\dfrac{0^3}{3}+\dfrac{0^2}{2}\right)}\\\\\\ =\mathsf{\dfrac{1}{3}+\dfrac{1}{2}-0}\\\\\\ =\mathsf{\dfrac{2}{6}+\dfrac{3}{6}}

     =\mathsf{\dfrac{5}{6}\quad\longleftarrow\quad esta~\acute{e}~a~resposta.}


Dúvidas? Comente.


Bons estudos! :-)

Perguntas interessantes