Matemática, perguntado por KaickM, 1 ano atrás

integral de 2x-1/x^3-x^2-x+1

Soluções para a tarefa

Respondido por deividsilva784
6
x³-x²-x+1 =

x²(x -1) -(x +1) = 0

(x-1)(x²-1) = 0



x²-1 = (x+1)(x-1)

(x-1)(x²-1) = (x-1)²(x+1)



 \\ integra( \frac{2x-1}{(x-1)^2(x+1)})dx =   \frac{2x-1}{(x-1)^2(x+1)} =\frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x+1} 
 \\  
 \\ 2x-1 = A(x-1)(x+1) + B(x+1) + C(x-1)
 \\  
 \\ 2x-1 = A(x^2-1) + Bx + B +Cx -C
 \\  
 \\ 2x-1 = Ax^2-A+Bx+B+Cx-C
 \\ 
 \\ 2x-1 = x^2(A) + x(B+C) + (-A+B -C)
 \\ 
 \\ A = 0
 \\ B+C = 2
 \\ -A+B-C = -1
 \\ 
 \\ B+C= 2
 \\ B -C = -1
 \\ 2B =1
 \\ B = 1/2
 \\ 1/2+C=2
 \\ C= 3/2
 \\

 \\ integra \frac{1/2}{(x-1)^2}dx +integral \frac{3/2}{x+1} dx
 \\  
 \\ -1/2(x-1)^-^1+3/2ln|x+1|+C
 \\ 
 \\  -1/2\frac{1}{x-1} +3/2Ln|x+1|+C
Perguntas interessantes