Matemática, perguntado por Rmessias, 1 ano atrás

Integral de 2- raiz de x/ raiz de x dx

Soluções para a tarefa

Respondido por Lukyo
2
I=\displaystyle\int{\dfrac{2-\sqrt{x}}{\sqrt{x}}\,dx}\\ \\ \\ =-2\int{-\dfrac{2-\sqrt{x}}{2\sqrt{x}}\,dx}\\ \\ \\ =-2\int{(2-\sqrt{x})\cdot\left(-\dfrac{1}{2\sqrt{x}} \right )dx}~~~~~~\mathbf{(i)}


Façamos a seguinte substituição:

2-\sqrt{x}=u~~\Rightarrow~~-\dfrac{1}{2\sqrt{x}}\,dx=du


Substituindo em \mathbf{(i)}, a integral fica

=\displaystyle-2\int{u\,du}\\ \\ \\ =-2\cdot \dfrac{u^{2}}{2}+C\\ \\ \\ =-\diagup\!\!\!\! 2\cdot \dfrac{u^{2}}{\diagup\!\!\!\! 2}+C\\ \\ \\ =-u^{2}+C\\ \\ \\ =-(2-\sqrt{x})^{2}+C\\ \\ \\ \\ \therefore~~\boxed{\begin{array}{c} \displaystyle\int{\dfrac{2-\sqrt{x}}{\sqrt{x}}\,dx}=-(2-\sqrt{x})^{2}+C \end{array}}

Respondido por ScreenBlack
1
Resolvendo a integral por partes:

\int u.dv = u.v-\int v.du\\\\\\\\
F_{(x)}=${\displaystyle \int \dfrac{2-\sqrt{x}}{\sqrt{x}}.dx\\\\
F_{(x)}=${\displaystyle \int (2-\sqrt{x})\dfrac{1}{\sqrt{x}}.dx\\\\
F_{(x)}=${\displaystyle \int (\underbrace{2-\sqrt{x}}) (\underbrace{x^{-\frac{1}{2}}.dx})\\
\ ~~~~~~~~~~~~~~~~~u~~~~~~~~~~dv


u=2-\sqrt{x}\ \ \ \ \ \ \ \ \ du=-\dfrac{1}{2\sqrt{x}}.dx\\\\ dv=x^{-\frac{1}{2}}.dx\ \ \ \ \ \ \ \ v=2\sqrt{x}\\\\\\\\
\displaystyle \int (2-\sqrt{x})(x^{-\frac{1}{2}}dx)=(2-\sqrt{x}).(2\sqrt{x})-\int (2\sqrt{x})\left(-\dfrac{1}{2\sqrt{x}}\right)dx\\\\
\displaystyle \int (2-\sqrt{x})(x^{-\frac{1}{2}}dx)=4\sqrt{x}-2x+\int \left(\dfrac{2\sqrt{x}}{2\sqrt{x}}\right)dx\\\\
\displaystyle \int (2-\sqrt{x})(x^{-\frac{1}{2}}dx)=4\sqrt{x}-2x+\int 1dx

\displaystyle \int (2-\sqrt{x})(x^{-\frac{1}{2}}dx)=4\sqrt{x}-2x+x+constante\\\\
\displaystyle \int (2-\sqrt{x})(x^{-\frac{1}{2}}dx)=4\sqrt{x}-x+constante\\\\\\
\boxed{F_{(x)}=4\sqrt{x}-x+constante}



Espero ter ajudado.
Bons estudos!
Perguntas interessantes