Matemática, perguntado por silvabarcelosp97pwb, 1 ano atrás

Integral 2^( x-1) dx

Soluções para a tarefa

Respondido por TheAprendiz
0

 \int\limits {2^{x-1}} \, dx \\ <br /><br />u=x-1 \\<br />du = dx \\<br /><br />\int\limits{2^{u}} \, du \\ \\<br />2^u = e^{u \cdot ln(2)} \\ \\ <br />\int\limits{e^{u \cdot ln(2)}} \, du \\ \\<br />v = u \cdot ln(2) \\<br />dv = ln(2)du \Rightarrow<br />du = \frac{1}{ln(2)}dv \\ \\<br />\frac{1}{ln(2)}\int\limits{e^{v}} \, dv = \frac{1}{ln(2)}\cdot e^v = \frac{1}{ln(2)}\cdot e^{u \cdot ln(2)}  =\frac{1}{ln(2)}\cdot e^{(x-1)\cdot ln(2)}=\frac{2^{x-1}}{ln(2)}   \\ \\ \int\limits {2^{x-1}} \, dx = \frac{2^{x-1}}{ln(2)}  + C

Perguntas interessantes