Insira cinco meio geométricos ente 10 e 20 nessa ordem.
Soluções para a tarefa
Respondido por
3
Olá Llopesam,
Para inserir 5 meios geométricos entre 10 e 20, iremos considerar o 10 o primeiro termo e o 20 o sétimo termo
Equação geral de uma P.G é
Encontrando a razão:
![20=10\cdot q^{7-1}\\20=10\cdot q^6\\\\\frac{20}{10}=q^6\\\\10=q^6\\\\q=\sqrt[6]{10} 20=10\cdot q^{7-1}\\20=10\cdot q^6\\\\\frac{20}{10}=q^6\\\\10=q^6\\\\q=\sqrt[6]{10}](https://tex.z-dn.net/?f=20%3D10%5Ccdot+q%5E%7B7-1%7D%5C%5C20%3D10%5Ccdot+q%5E6%5C%5C%5C%5C%5Cfrac%7B20%7D%7B10%7D%3Dq%5E6%5C%5C%5C%5C10%3Dq%5E6%5C%5C%5C%5Cq%3D%5Csqrt%5B6%5D%7B10%7D)
Encontrando os termos:
![a_2=10\cdot (\sqrt[6]{10})^{2-1}\\a_2=10\cdot \sqrt[6]{10}\\a_2=10\cdot 10^{\frac{1}{6}}\\a_2=10^{\frac{7}{6}}\\a_2=\sqrt[6]{10^7}\\a_2=\sqrt[6]{10^{6+1}}\\a_2=10\sqrt[6]{10}\\\\a_3=10\cdot (\sqrt[6]{10})^{3-1}\\a_3=10\cdot 10^{\frac{2}{6}}\\a_3=10^{\frac{8}{6}}\\a_3=\sqrt[4]{10^3}\\\\a_4=10\cdot (\sqrt[6]{10})^{4-1}\\a_4=10\cdot 10^{\frac{3}{6}}\\a_4=10^{\frac{3}{2}}\\a_4=\sqrt{10^{2+1}}\\a_4=\sqrt{10^2.10}\\a_4=10\sqrt{10} a_2=10\cdot (\sqrt[6]{10})^{2-1}\\a_2=10\cdot \sqrt[6]{10}\\a_2=10\cdot 10^{\frac{1}{6}}\\a_2=10^{\frac{7}{6}}\\a_2=\sqrt[6]{10^7}\\a_2=\sqrt[6]{10^{6+1}}\\a_2=10\sqrt[6]{10}\\\\a_3=10\cdot (\sqrt[6]{10})^{3-1}\\a_3=10\cdot 10^{\frac{2}{6}}\\a_3=10^{\frac{8}{6}}\\a_3=\sqrt[4]{10^3}\\\\a_4=10\cdot (\sqrt[6]{10})^{4-1}\\a_4=10\cdot 10^{\frac{3}{6}}\\a_4=10^{\frac{3}{2}}\\a_4=\sqrt{10^{2+1}}\\a_4=\sqrt{10^2.10}\\a_4=10\sqrt{10}](https://tex.z-dn.net/?f=a_2%3D10%5Ccdot+%28%5Csqrt%5B6%5D%7B10%7D%29%5E%7B2-1%7D%5C%5Ca_2%3D10%5Ccdot+%5Csqrt%5B6%5D%7B10%7D%5C%5Ca_2%3D10%5Ccdot+10%5E%7B%5Cfrac%7B1%7D%7B6%7D%7D%5C%5Ca_2%3D10%5E%7B%5Cfrac%7B7%7D%7B6%7D%7D%5C%5Ca_2%3D%5Csqrt%5B6%5D%7B10%5E7%7D%5C%5Ca_2%3D%5Csqrt%5B6%5D%7B10%5E%7B6%2B1%7D%7D%5C%5Ca_2%3D10%5Csqrt%5B6%5D%7B10%7D%5C%5C%5C%5Ca_3%3D10%5Ccdot+%28%5Csqrt%5B6%5D%7B10%7D%29%5E%7B3-1%7D%5C%5Ca_3%3D10%5Ccdot+10%5E%7B%5Cfrac%7B2%7D%7B6%7D%7D%5C%5Ca_3%3D10%5E%7B%5Cfrac%7B8%7D%7B6%7D%7D%5C%5Ca_3%3D%5Csqrt%5B4%5D%7B10%5E3%7D%5C%5C%5C%5Ca_4%3D10%5Ccdot+%28%5Csqrt%5B6%5D%7B10%7D%29%5E%7B4-1%7D%5C%5Ca_4%3D10%5Ccdot+10%5E%7B%5Cfrac%7B3%7D%7B6%7D%7D%5C%5Ca_4%3D10%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%5C%5Ca_4%3D%5Csqrt%7B10%5E%7B2%2B1%7D%7D%5C%5Ca_4%3D%5Csqrt%7B10%5E2.10%7D%5C%5Ca_4%3D10%5Csqrt%7B10%7D)
![a_5=10\cdot (\sqrt[6]{10})^{5-1}\\a_5=10\cdot 10^{\frac{4}{6}}\\a_5=10^\frac{5}{3}\\a_5=\sqrt[3]{10^5}\\a_5=\sqrt[3]{10^{3+2}}\\a_5=10\sqrt[3]{10^2} a_5=10\cdot (\sqrt[6]{10})^{5-1}\\a_5=10\cdot 10^{\frac{4}{6}}\\a_5=10^\frac{5}{3}\\a_5=\sqrt[3]{10^5}\\a_5=\sqrt[3]{10^{3+2}}\\a_5=10\sqrt[3]{10^2}](https://tex.z-dn.net/?f=a_5%3D10%5Ccdot+%28%5Csqrt%5B6%5D%7B10%7D%29%5E%7B5-1%7D%5C%5Ca_5%3D10%5Ccdot+10%5E%7B%5Cfrac%7B4%7D%7B6%7D%7D%5C%5Ca_5%3D10%5E%5Cfrac%7B5%7D%7B3%7D%5C%5Ca_5%3D%5Csqrt%5B3%5D%7B10%5E5%7D%5C%5Ca_5%3D%5Csqrt%5B3%5D%7B10%5E%7B3%2B2%7D%7D%5C%5Ca_5%3D10%5Csqrt%5B3%5D%7B10%5E2%7D)
![a_6=10\cdot (\sqrt[6]{10})^{6-1}\\a_6=10\cdot 10^\frac{5}{6}\\a_6=10^{\frac{11}{6}}\\a_6=\sqrt[6]{10^{11}}\\a_6=\sqrt[6]{10^{6+5}}\\a_6=10\sqrt[6]{10^5} a_6=10\cdot (\sqrt[6]{10})^{6-1}\\a_6=10\cdot 10^\frac{5}{6}\\a_6=10^{\frac{11}{6}}\\a_6=\sqrt[6]{10^{11}}\\a_6=\sqrt[6]{10^{6+5}}\\a_6=10\sqrt[6]{10^5}](https://tex.z-dn.net/?f=a_6%3D10%5Ccdot+%28%5Csqrt%5B6%5D%7B10%7D%29%5E%7B6-1%7D%5C%5Ca_6%3D10%5Ccdot+10%5E%5Cfrac%7B5%7D%7B6%7D%5C%5Ca_6%3D10%5E%7B%5Cfrac%7B11%7D%7B6%7D%7D%5C%5Ca_6%3D%5Csqrt%5B6%5D%7B10%5E%7B11%7D%7D%5C%5Ca_6%3D%5Csqrt%5B6%5D%7B10%5E%7B6%2B5%7D%7D%5C%5Ca_6%3D10%5Csqrt%5B6%5D%7B10%5E5%7D)
![\\\\\mathsf{P.G=(10,~10\sqrt[6]{10},~\sqrt[4]{10^3},~10\sqrt{10},~10\sqrt[3]{10^2},~10\sqrt[6]{10^5},~20}) \\\\\mathsf{P.G=(10,~10\sqrt[6]{10},~\sqrt[4]{10^3},~10\sqrt{10},~10\sqrt[3]{10^2},~10\sqrt[6]{10^5},~20})](https://tex.z-dn.net/?f=%5C%5C%5C%5C%5Cmathsf%7BP.G%3D%2810%2C%7E10%5Csqrt%5B6%5D%7B10%7D%2C%7E%5Csqrt%5B4%5D%7B10%5E3%7D%2C%7E10%5Csqrt%7B10%7D%2C%7E10%5Csqrt%5B3%5D%7B10%5E2%7D%2C%7E10%5Csqrt%5B6%5D%7B10%5E5%7D%2C%7E20%7D%29)
Dúvidas? comente
Para inserir 5 meios geométricos entre 10 e 20, iremos considerar o 10 o primeiro termo e o 20 o sétimo termo
Equação geral de uma P.G é
Encontrando a razão:
Encontrando os termos:
Dúvidas? comente
Perguntas interessantes