Inequação Modular
| x + 2 / 2x - 1 | >= 1
Soluções para a tarefa
Respondido por
1
Resposta:
Se for | (x+2)/(2x-1)| ≥ 1
Caso (x+2)/(2x-1) ≥ 0
--------(-2)++++++++++++++++++
-------------------------(1/2)++++++++
++++(-2)-------------(1/2)++++++++
-2 ≥ x > (1/2)
Podemos tirar o sinal de módulo
(x+2)/(2x-1) ≥ 1
(x+2)/(2x-1) -1 ≥ 0
(x+2-2x+1)/(2x-1) ≥ 0
(-x+3)/(2x-1)≥ 0
+++++++++++++++(3)-------------------
----------(1/2)+++++++++++++++++
----------(1/2)+++++(3)--------------------
1/2 < x ≤ 3 (i)
Caso (x+2)/(2x-1) < 0
-2 ≤ x < (1/2)
-(x+2)/(2x-1) ≤1
(x+2)/(2x-1)≤-1
(x+2)/(2x-1) +1 ≤0
(x+2+2x-1)/(2x-1) ≤0
(3x+1)/(2x-1) ≤ 0
-----------------(-1/3)++++++++++++++
-------------------------------(1/2)++++++
++++++++++(-1/3)--------(1/2)++++++
-1/3 ≤ x < (1/2)
-1/3 ≤ x <1/2 (ii)
Resposta: 1/2 < x ≤ 3 U -1/3 ≤ x <1/2 = [ -1/3 ; 1/2) U (1/2 ; 3]
Perguntas interessantes