Matemática, perguntado por isdrm, 1 ano atrás

indique os valores reais de x para os quais é possível determinar:

a)log5 x
b)log10 (x-3)
c)log4 (x²-16)

Soluções para a tarefa

Respondido por adjemir
26

Vamos lá.

Veja, Isdrm, que a resolução parece simples.

i) Pede-se para indicar os valores reais de "x" para os quais é possível determinar as seguintes equações logarítmicas, que vamos chamar, cada uma delas, de um certo "y" apenas parea deixá-las igualadas a alguma coisa:


a)

y = log₅ (x)

Vamos para a condição de existência: só há logaritmos de números positivos. Logo, só será possível determinar o valor de "x" na questão do item "a" se e somente se o logaritmando "x" for maior do que zero, ou:

x > 0 ---- Esta é a condição de existência para a questão do item "a". Ou seja, só será possível determinar a equação logarítmica do item "a" se "x" for maior do que zero (ou seja, se "x" for positivo).


b)

y = log₁₀ (x-3)

Condição de existência: o logaritmando (x-3) terá que ser positivo. Logo:

x - 3 > 0

x > 3 ----- Esta é a condição de existência para a questão do item "b". Ou seja, só será possível determinar a equação logarítmica do item "b" se "x" for maior do que "3".


c)

y = log₄ (x²-16)

Condição de existência: o logaritmando formado pela equação "x²-16" terá que ser maior do que zero. Então:

x² - 16 > 0 ------- isolando x², teremos:

x² > 16 ---- agora isolando "x", teremos:

x > ± √(16) ----- como √(16) = 4, então teremos que:

x > ± 4 ------- note que quando temos que n > ± a, isso significa que:

-a > n > a . Então se temos que x > ± 4, então iremos ter que:

-4 > x > 4 ----- Esta é a condição de existência para a questão do item "c". Ou seja, só será possível determinar a equação logarítmica do item "c" se "x" for menor do que "-4" ou maior do que "4".


É isso aí.

Deu pra entender bem?


OK?

Adjemir.


adjemir: Agradecemos à moderadora Camponesa pela aprovação da nossa resposta. Um cordial abraço.
adjemir: E aí, Isdrm, era isso mesmo o que você estava esperando?
Perguntas interessantes