Matemática, perguntado por nichesoliv1420, 10 meses atrás

indique a coluna que apresenta apenas números racionais​

Soluções para a tarefa

Respondido por ednetisousa
204

Resposta:

Q = { …-2,5454...; - 2; - 1,5; - 1; - 1; 0; + 1; + 1, 2; + 2; + 3,4343...; + 4 ...}

2 2

No conjunto descrito acima, temos que:

0, 2 , 4 → São números naturais.

- 2, - 1, 0, + 2, + 4 → São números inteiros.

- 1 e + 1 → São frações.

2 2

-2,5454... e + 3,4343... → São dízimas periódicas.

- 1,5 e 1, 2 → São números decimais.

Para comparar os números racionais, podemos dispô-los em uma reta numérica. Veja um exemplos:

Os números - 3, +3, - 2, + 2, -1 e +1 são opostos e possuem o mesmo valor absoluto, ou seja, valor em módulo. Observe:

|- 3| = 3

|+ 3| = 3

|- 2| = 2

|+ 2| = 2

|- 1| = 1

|+ 1|=1

Para comparar os números racionais, podemos utilizar os sinais de maior (>) e menor (<) ou considerar o sucessor e o antecessor de um número.

- 2 é antecessor de -1;

-1 é menor que + 0,8 → - 1 < + 0,8;

2 2

+ 3 é sucessor de +2;

0 é maior que – 2,5 → 0 > - 2,5.

Acompanhe a seguir alguns exemplos de comparação de números racionais.

Exemplo 1:

Determine o maior número entre – 2,5 e + 0,8.

Resposta: Pela reta numérica da imagem acima, sabemos que + 0,8 é maior que – 2,5, Caso não tivéssemos o desenho dessa reta, determinaríamos o maior número observando os sinais, pois o menor número sempre será o negativo. Conclui-se, então, que:

+ 0,8 > - 2, 5

Maior número: + 0,8

Menor número: - 2,5

Exemplo 2: Qual número racional é maior – 3 ou –1 ?

2 2

Resposta: Por causa da reta numérica representada anteriormente, sabemos que a maior fração entre as duas é – 1 .

2

Caso não tivéssemos a reta numérica, descobriríamos a maior fração comparando o valor dos numeradores. Observe que:

- 3 é o numerador da fração – 3

2

- 1 é o numerador da fração – 1

2

Como – 1 está mais próximo de 0, então ele é maior em relação a – 3. Por esse motivo, temos que a fração – 1 é maior que - 3

2 2

- 1 > - 3

2 2

Exemplo 3: Determine o maior número entre: + 5 e + 11.

3 4

Resposta: Ao olharmos para imagem da reta numérica representada anteriormente, sabemos que + 11 é maior que + 5. Caso não tivéssemos a reta, descobriríamos isso

4 3

realizando a redução de ambas as frações para o mesmo denominador. Acompanhe como podemos fazer isso:

Inicialmente fazemos o Mínimo Múltiplo Comum (MMC) dos números 3 e 4.

3, 4| 3

1, 4| 4

1, 1|

MMC (3, 4) = 3 . 4 = 12

Devemos agora reduzir o numerador ao número 12.

+ 11x 3 = + 33

4 x 3 12

Para obtermos 12 no denominador, devemos multiplicar 4 por 3. Como a fração deve ser proporcional, também multiplicamos o numerador por 3.

5 x 4 = + 20

3 x 4 12

Ao multiplicarmo o denominador 3 por 4, obtemos 12 como resultado. Como a fração deve ser proporcional, multiplicamos o numerador 5 por 4.

Após reduzir o denominador para um mesmo valor numérico, obtivemos como resposta as seguintes frações:

33 e 20

12 12

Para sabermos qual é a maior fração, devemos comparar os numeradores 33 e 20. Ao compará-los, constatamos que 33 é maior que 20.

33 > 20

12 12

Respondido por badtz
622

Resposta: B) Coluna 2

Explicação passo-a-passo:

Perguntas interessantes