Identifique os valores dos coeficientes a, b e c da função:
f(x) =(×-3)²-6
(l) a=1, b=3, c=-6
(ll) a=1, b=-6, c=3
(lll) a=1, b=6, c=-3
(lV) a=1, b=-3, c=-6
(V) a=0, b=-3, c=6
Soluções para a tarefa
Explicação passo a passo:
Definimos como função do 2º grau, ou função quadrática, a função R → R, ou seja, uma função em que o domínio e o contradomínio são iguais ao conjunto dos números reais, e que possui a lei de formação f(x) = ax² +bx +c.
O gráfico da função quadrática é sempre uma parábola e possui elementos importantes, que são:
as raízes da função quadrática, calculadas pelo x’ e x”;
o vértice da parábola, que pode ser encontrado a partir de fórmulas
O que é uma função do 2º grau
Uma função polinomial é conhecida como função do 2º grau, ou também como função quadrática, quando em sua lei de formação ela possui um polinômio de grau dois, ou seja, f(x) = ax² +bx +c, em que a, b e c são números reais, e a ≠ 0. Além da lei de formação, essa função possui domínio e contradomínio no conjunto dos números reais, ou seja, f: R→ R.
Exemplos:
a) f(x) = 2x²+3x + 1
a = 2
b = 3
c=1
b) g(x) = -x² + 4
a = -1
b = 0
c = 4
c) h(x) = x² – x
a = 1
b = -1
c = 0
Valor numérico de uma função
Para encontrar o valor numérico de qualquer função, conhecendo a sua lei de formação, basta realizarmos a substituição do valor de x para encontrar a imagem f(x).
Exemplos:
Dada a função f(x) = x² + 2x – 3, calcule:
a) f(0)
f(0) = 0² +2·0 – 3 = 0 + 0 – 3 = –3
b) f(1)
f(1) = 1² + 2·1 + 3 = 1+2 – 3 = 0
c) f(2)
f(2) = 2² + 2·2+3 = 4+4–3=5
d) f(-2)
f(-2) = (-2)² + 2·(-2) – 3
f(-2) = 4 - 4 – 3 = –3