I) Área de um polígono e sua associação com funções de uma variável real.
II) Volume de um sólido e sua associação com funções de uma variável real.
III) Estudo de cônicas e suas aplicações no cotidiano.
Soluções para a tarefa
Olá!
I) Temos que a Área é uma grandeza baseada em duas dimensões, assim, ele deve ser resultado da multiplicações de duas grandezas.
Assim, se tomarmos um lado de qualquer polígono como sendo igual a x, uma variável real, teremos que a área pode ser representada por:
A = x . x = x²
Por exemplo, se tomarmos o retângulo. Sua área será a multiplicação do seu comprimento com sua largura. Assim:
II) Temos que o volume é uma grandeza tridimensional, assim, ela deve ser resultado da multiplicação de 3 dimensões.
Assim, se tomarmos um lado de qualquer objeto como sendo igual a x, uma variável real, teremos então que o volume pode ser representado por:
V = x . x . x = x³
Vamos pegar como exemplo um paralelepípedo com base retangular. Seu volume sera a multiplicação de sua largura (l) por seu comprimento (c) e sua altura (a):
III) As cônicas são obtidas ao traçarmos um plano sobre um cone. Elas começaram a ser estudas a bastante tempo, porém foi Apolônio de Perga, em 225 a.C., que tornou famoso os termos como elipse, parábola e hipérbole.
Elas estão disponíveis em muitas coisas do cotidiano, como no estudo dos movimentos dos astros na astronomia, propriedades refletoras de espelhos, caixas acústicas e antenas, sendo então utilizadas em faróis de carros para melhor iluminação, em teatros para um melhor aproveitamento do som e em antenas de transmissão para melhor coleta de sinal, entre outros usos e aplicações.
Espero ter ajudado!