Matemática, perguntado por thalypietrala1p4qi0t, 10 meses atrás

help me , é pra amanhã ♥️​

Anexos:

Soluções para a tarefa

Respondido por Nasgovaskov
3

Explicação passo a passo:

Olá Boa noite!

\red{\boxed{\mathbf{QUESTAO  \: 6}}}

\sf{(3^{\frac{x}{2}})^{x - 1} = (\dfrac{3}{9})^{x - 3}}

\sf{(3^{\frac{x\cdot(x - 1)}{2}}) = (\dfrac{9}{3}^{-1})^{x - 3}}

\sf{(3^{\frac{x^2 - x}{2}}) = (\dfrac{9}{3})^{-1\cdot(x - 3)}}

\sf{(3^{\frac{x^2 - x}{2}}) = (3)^{- x + 3}}

\sf{(\backslash \!\!\! 3^{\frac{x^2 - x}{2}}) = (\backslash \!\!\! 3)^{- x + 3}}

\sf{\dfrac{x^2 - x}{2} = - x + 3}

\sf{x^2 - x = 2\cdot(- x + 3)}

\sf{x^2 - x = - 2x + 6}

\sf{x^2 - x + 2x - 6 = 0}

\sf{x^2 + x - 6 = 0}

\sf{\Delta = b^2 - 4ac}

\sf{\Delta = 1^2 - 4\cdot1\cdot(-6)}

\sf{\Delta = 1 + 24}

\sf{\Delta = 25}

\sf{x = \dfrac{- b \pm \sqrt{\Delta}}{2a}}

\sf{x = \dfrac{- 1 \pm \sqrt{25}}{2\cdot1}}

\sf{x = \dfrac{- 1 \pm 5}{2}}

•~~\sf{x' = \dfrac{- 1 + 5}{2} = \dfrac{4}{2} = 2}

•~~\sf{x" = \dfrac{- 1 - 5}{2} = - \dfrac{6}{2} = - 3}

\boxed{\sf{S = \left\{- 3~~;~~2\right\}}}

\red{\boxed{\mathbf{QUESTAO  \: 7}}}

\sf{(\dfrac{5}{2})^x = 0,16}

\sf{(\dfrac{5}{2})^x = \dfrac{4}{25}}

\sf{(\dfrac{5}{2})^x = (\dfrac{2}{5})^2}

\sf{(\dfrac{5}{2})^x = (\dfrac{5}{2})^{-2}}

\sf{(\dfrac{\backslash \!\!\! 5}{\backslash \!\!\! 2})^x = (\dfrac{\backslash \!\!\! 5}{\backslash \!\!\! 2})^{-2}}

\boxed{\sf{x = - 2}}

Perguntas interessantes