Matemática, perguntado por andreitu0810, 4 meses atrás

Heitor está treinando em sua bicicleta e percorre, aproximadamente, 40 km aos fins de semana. Ele comprou um modelo profissional com aro 29'', ou seja o diâmetro da roda da bicicleta mede 29 polegadas.

Sabendo que cada polegada equivale a 2,5 cm, a quantidade de voltas completas que a roda da bicicleta dá, no fim de semana está mais próxima de:
considere = 3
A 18 400
B´ 10 400
C 8600
D 25 000


troublreems: vc conseguiu?
nicolas1926822049: Também estou precisando
gomespeidaogmailcom: Ha

Soluções para a tarefa

Respondido por dlima85dl
25

Resposta:

a) 18400

Explicação passo a passo:

Para calcular a distancia de uma volta da roda:

multiplicar 2,5 (valor em cm) x 29 (polegadas) = 72,50cm

Converta 72,50cm para metros dividindo por 100, então temos  0,725m

Temos o dado de \pi = 3 , então temos 0,725 x 3 = 2,175m

Agora converta 40Km para metros multiplicando por 1000 = 40.000

Divida 40.000 por 2,175 = 18390

= 18390 é o número aproximado de voltas que a roda dá em uma distância de 40KM, portanto a resposta correta é a A

Espero ter ajudado


brianbasso57: obg lenda, ajudou mto
luizalitter09: salvou minha nota no simulado
matheusmotta537: mt obg
Respondido por andre19santos
21

A quantidade de voltas completas que a roda da bicicleta dá está mais próxima de 18.400, alternativa A.

Esta questão se trata de circunferências. Uma circunferência é o conjunto dos pontos que estão à uma mesma distância de um ponto comum chamado centro.

Sabemos que a bicicleta possui aros de 29 polegadas de diâmetro, podemos converter este valor para centímetros ao multiplicar por 2,5:

29" · 2,5 = 72,5 cm

O comprimento de uma circunferência de diâmetro d é dada por:

C = π·d

Logo, o comprimento da roda da bicicleta é:

C = 72,5·3

C = 217,5 cm

C = 2,175 m

A distância percorrida foi de 40 km ou 40 mil metros, logo, a quantidade de voltas é:

n = 40.000/2,175

n = 18.390,8

n ≈ 18.400

Leia mais sobre circunferências em:

https://brainly.com.br/tarefa/30505456

Anexos:
Perguntas interessantes