Há dois numeros naturais que tem P unidades de milhar, (p+3) centenas, p dezenas e (p+1) unidades simples, que são múltiplos de 3. Pode afirmar que a soma dos possíveis valores de p é:
A) 15
B)12
C)9
D)7
Soluções para a tarefa
Respondido por
14
Vejamos as possibilidades:
p p+3 p p+1
P = 1 1 4 1 2 (não serve, pois não é múltiplo de 3)
P = 2 2 5 2 3 ( serve, pois é múltiplo de 3)
P = 3 3 6 3 4 (não serve, pois não é múltiplo de 3)
P = 4 4 7 4 5 (não serve, pois não é múltiplo de 3)
P = 5 5 8 5 6 (serve, pois é múltiplo de 3)
P = 6 6 9 6 7 (não serve, pois não é múltiplo de 3)
Do 7 em diante não serve, pois o número fica maior do que um número com unidades de milhar...
Então: P = 2 + 5, que é igual a 7.
p p+3 p p+1
P = 1 1 4 1 2 (não serve, pois não é múltiplo de 3)
P = 2 2 5 2 3 ( serve, pois é múltiplo de 3)
P = 3 3 6 3 4 (não serve, pois não é múltiplo de 3)
P = 4 4 7 4 5 (não serve, pois não é múltiplo de 3)
P = 5 5 8 5 6 (serve, pois é múltiplo de 3)
P = 6 6 9 6 7 (não serve, pois não é múltiplo de 3)
Do 7 em diante não serve, pois o número fica maior do que um número com unidades de milhar...
Então: P = 2 + 5, que é igual a 7.
Respondido por
0
Resposta:
calaboca
Explicação passo a passo:
Perguntas interessantes
Inglês,
9 meses atrás
Matemática,
9 meses atrás
Biologia,
1 ano atrás
Matemática,
1 ano atrás
Química,
1 ano atrás
Psicologia,
1 ano atrás