Matemática, perguntado por mariahlaura606, 6 meses atrás

GEOMETRIA
(Enem-2000) Em uma empresa, existe um galpão que precisa ser dividido em três depósitos e um hall de entrada de 20 m2, conforme a figura a seguir. Os depósitos I, II e III serão construídos para o armazenamento de, respectivamente, 90, 60 e 120 fardos de igual volume, e suas áreas devem ser proporcionais a essas capacidades. Hall 20 m² 10 m II 11 m. A largura do depósito III dever ser, em metros, igual a:

A) 1
B) 2
C) 3
D) 4
E) 5 irmãos​


richardaraujo1228200: obgd

Soluções para a tarefa

Respondido por denisefrancisco2009
6

Resposta:B)25% do salário

Explicação passo a passo:


isabellybati85: Se vc ta fazendo no CMSP ta certo é a B
Respondido por nayanialvesr
1

A largura do galpão é de 4m, letra D

> Segue em anexo a imagem do comando que faltou.

Passo 1: Primeiramente, é preciso encontrar a área total do galpão:

A = largura x altura\\A = 10 * 11\\A = 110m^{2}

Passo 2: Agora, temos que achar qual a área destinada aos galpões. Como temos a área total e a área do hall, então basta subtrair esses dois valores:

A = Ahall + Agalpões\\110 = 20 + Ag\\Ag = 110 - 20\\Ag = 90m^{2}

Passo 3: Essa é uma questão de grandezas diretamente proporcionais. Dessa forma, vamos supor que toda a área seja fragmentada em pequenas partes de dimensão X. Ou seja, a somatória de todos os "x" nos daria a área total. O comando nos diz que 90 partes precisam ser do galpão I, 60 partes do galpão II e 120 partes do galpão III. Assim, temos que:

AI + AII + AIII = Ag\\90x + 60x + 120x = 90\\270 = 90x\\x = \frac{90}{270} \\x = \frac{1}{3}

Passo 4: Agora, podemos achar a área do galpão III, já que sua área é composta por 120 partes, ou seja, 120x:

AIII = 120x\\AIII = 120 . \frac{1}{3} \\AIII = \frac{120}{3} \\AIII = 40m^{2}

Passo 5: Agora fica fácil achar a largura do depósito III, pois já temos a sua área e sabemos o seu comprimento, que é de 10m. Como o galpão III é um retângulo, sua área é dada por largura (L) x comprimento (C). Logo:

AIII = L x C\\40 = L x 10\\L = 4m

Para ver mais questões sobre grandezas diretamente proporcionais, acesse:

  • https://brainly.com.br/tarefa/10782732
Anexos:
Perguntas interessantes