Matemática, perguntado por baurogueradical, 1 ano atrás

Geometria Analitica do Superior, alguém me ajuda a resolver essa questão ? Dados o ponto P(2,1) e a reta r da equação y=3x-5, escreva uma equação da reta que contém o ponto P e:

a)seja paralela a reta
b) seja perpendicular a reta

Me ajudem galera, obrigado .

Soluções para a tarefa

Respondido por Usuário anônimo
2
Bom, vamos lá.

a) Para uma reta ser paralela a reta "r", ela deve ter o coeficiente angular obrigatoriamente igual a ela. Portanto, vamos saber qual o coeficiente angular da reta "r":

y = \underbrace{3}_{m}x-5
\\\\\\
m = \text{coeficiente \ angular}

Bom, se temos o ponto que passe nessa reta e o coeficiente que ela precisa ter para ser paralela a reta "r", agora é só jogar na equação fundamental:

y-y_{0} = m(x-x_{0})
\\\\
y-1 = 3(x-2)
\\\\
y-1 = 3x-6
\\\\
y= 3x-6+1
\\\\
\boxed{\boxed{y = 3x-5}}

Perceba que deu a mesma equação. Quer dizer que as retas são PARALELAS COINCIDENTES.


b) Agora os coeficientes angulares, multiplicados, devem dar -1. Já sabemos que o coeficiente de r é 3, portanto, o coeficiente da outra reta será:

m_{r} \cdot m_{s} = -1
\\\\
3 \cdot m_{s} = -1
\\\\
\boxed{m_{s} = -\frac{1}{3}}

Temos um coeficiente e um ponto que passa nela, só jogamos na fundamental:

y-y_{0} = m(x-x_{0})
\\\\
y-1 = -\frac{1}{3}(x-2)
\\\\
y-1 = -\frac{1x}{3}+\frac{2}{3}
\\\\
y= -\frac{1x}{3}+\frac{2}{3}+1
\\\\
\boxed{\boxed{y = -\frac{1x}{3}+\frac{5}{3}}}
Perguntas interessantes