Matemática, perguntado por LuanaBeatriz321, 1 ano atrás

Gente me ajudem como resolver esses limites por favor !!

1º) Calcule os limites abaixo:

a) \lim _{x\to -9}\left(\sqrt{-x-x-10}\right)

b) \lim _{x\to -1}\sqrt{2-x^2}

c) \lim _{x\to 9}\left(\frac{x\sqrt{x}}{x^2-1}\right)

d) \lim _{x\to 3}\left(1-\frac{\sqrt{1+x}}{\sqrt{x-1-x}}\right)

e) \lim _{x\to 3}\frac{x-3}{\sqrt{x-\sqrt{3}}\:}

Soluções para a tarefa

Respondido por Usuário anônimo
1

Boa tarde Luana!
Solução!

O objetivo na resolução de um limite,é eliminar sua indeterminação.

Em alguns casos aqui basta substituir para obter o valor do limite.

 A)\\\\ \lim_{x \to -9} \sqrt{-x-x-10}
\\\\\ \lim_{x \to -9} \sqrt{-2x-10}\\\\\ \lim_{x \to -9} \sqrt{-2(-9)-10}\\\\\
\lim_{x \to -9} \sqrt{-2(-9)-10}\\\\\ \lim_{x \to -9} \sqrt{18-10}\\\\\ \lim_{x
\to -9} \sqrt{8}\\\\\ \lim_{x \to -9} 2 \sqrt{2} \\\\\\\\\\ \boxed{Resposta:
\lim_{x \to -9} \sqrt{-x-x-10}=2 \sqrt{2}}


B)\\\\ \lim_{x \to -1} \sqrt{2- x^{2} }
\\\\\\ \lim_{x \to -1} \sqrt{2- (-1)^{2} } \\\\\\ \lim_{x \to -1} \sqrt{2 -1 }
\\\\\\ \lim_{x \to -1} \sqrt{1 } \\\\\\ \lim_{x \to -1} 1\\\\\\\\\\\
\boxed{Resposta: \lim_{x \to -1} \sqrt{2- x^{2} }=1}

C)\\\\\

 \lim_{x \to 9} \dfrac{x \sqrt{x} }{ x^{2}
-1} \\\\\\\\ \lim_{x \to 9} \dfrac{9 \sqrt{9} }{ (9)^{2} -1} \\\\\\ \lim_{x \to
9} \dfrac{9.3}{ 81 -1} \\\\\\\\\ \lim_{x \to 9} \dfrac{27}{ 80} \\\\\\\\\\\
\boxed{Resposta:\lim_{x \to 9} \dfrac{x \sqrt{x} }{ x^{2} -1}= \frac{27}{80}}


D)\\\\\

 \lim_{x \to 3}  \dfrac{1- \sqrt{1+x} }{ \sqrt{-1} }\\\\\\
 \lim_{x \to 3}  \dfrac{1- \sqrt{1+x} }{ i} }\\\\\\
 \lim_{x \to 3}  \dfrac{i- \sqrt{1+x} }{ i} }\\\\\\  
 \lim_{x \to 3}  \dfrac{i+ \sqrt{-1-x} }{ i} }\\\\\\    
Lembrando~~i=1~~-1=i^{2}


 \lim_{x \to 3} \dfrac{i+\sqrt{-1-3} }{ i} }\\\\\\\\
\lim_{x \to 3} \dfrac{i+\sqrt{-4} }{ i} }\\\\\\\\
\lim_{x \to 3} \dfrac{i+2i^{2}  }{ i} }\\\\\\\\
\lim_{x \to 3} \dfrac{i(1+2i) }{ i} }\\\\\\\\
\lim_{x \to 3} 1+2i\\\\\\\\\\\
\boxed{Resposta:\lim_{x \to 3} \dfrac{1- \sqrt{1+x} }{ \sqrt{x-1-x} }=1+2i}


E)\\\\
 \lim_{x \to 3} \dfrac{x-3}{ \sqrt{x- \sqrt{3} } } \\\\\\
\lim_{x \to 3} \dfrac{x-3}{ \sqrt{x- (\sqrt{3} )^{2} } } \\\\\\
\lim_{x \to 3} \dfrac{x-3}{ \sqrt{x-3} } \\\\\\
\lim_{x \to 3} \dfrac{3-3}{ \sqrt{3-3} } \\\\\\
\lim_{x \to 3} \dfrac{0}{ \sqrt{0} } \\\\\\
\lim_{x \to 3} \dfrac{0}{ 0 } \\\\\\
\lim_{x \to 3}~~0\\\\\\\\\\


\boxed{Resposta:\lim_{x \to 3} \dfrac{x-3}{ \sqrt{x- \sqrt{3} } }=0}


Boa noite!

Bons estudos!



LuanaBeatriz321: Muito obrigado !
Perguntas interessantes